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Résumé. — Dans le cas de bandes intenses des artefacts dus au processus d’apodisation peuvent apparaitre
dans les spectres infrarouges obtenus par transformée de Fourier. Ces effets ont déja été étudiés sur des
spectres obtenus par différence pour des fonctions d’apodisation de type boxcar ou triangulaire. Ce travail
présente des simulations numériques réalisées avec une fonction d’apodisation de type Happ-Genzel
couramment employée dans les instruments modernes. Pour comparer les performances des fonctions
d’appareil de type boxcar, triangulaire, ou Happ-Genzel nous avons calculé (i) les artefacts apparaissant dans
les spectres obtenus par différence ; (ii) la variation de I’absorbance apparente au sommet d’un pic
d’absorption en fonction de I’absorbance vraie ; (iii) une mesure intégrée de I'erreur due a ces artefacts pour
une bande d’absorption a profil lorentzien. L’étude est faite pour des valeurs de p (rapport de la largeur totale
du pic & mi-hauteur a la résolution) qu’on rencontre couramment en spectroscopie de transmission
d’échantillons solides ou translucides.

Abstract. — Artifacts may occur in Fourier transform infrared (FTIR) spectra due to the apodization of the
interferograms of intense bands. Selected examples of boxcar and triangular apodization effects on difference
spectra have been previously reported. This paper reports the first such calculation performed for the Happ-
Genzel apodization function, which is often used on modern spectrometers. In order to compare boxcar,
triangular, and Happ-Genzel apodization functions we calculate (i) difference-spectrum artifacts, (ii) apparent
versus true peak absorbances, and (iii) a measure of integrated artifact area for several true peak intensities of
Lorentzian-band shapes. Values of p (ratio of full bandwidth at half height to nominal resolution) are
emphasized which commonly occur in the transmission-mode spectroscopy of transparent or translucent solid

samples.

1. Introduction.

1.1 ORIGIN OF THE PROBLEM. — Fourier transform
infrared (FTIR) analysis of aging in polymeric
electrical insulation has been shown to be important
in describing the dielectric breakdown process [1].
Continuing chemical reactions during aging cause
variations in concentrations of functional groups. If
physical rearrangements of polymer chains occur
during aging, then there is also a change in the
molecular environment, and hence in the effective
dipole strength of the molecular oscillators. Such
chemical and physical changes cause changes in a
specimen’s molecular vibration spectrum. The FTIR
spectra taken before and after specimen aging reflect
these changes, which are typically displayed as the
digital subtraction of the initial spectrum from the
final spectrum.

We are interested in extending the method of
reference [1] to other insulations. However, it is not

(*) Current address : Harry Diamond Laboratory, 2800
Powder Mill Road, Adelpli, MD 20783, U.S.A.
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apparent why this method works at all. In transmis-
sion-mode analysis, Mitsui, et al., used specimens 5-
10 p thick, while we have so far analysed specimens
7-12 . thick. Our unsubtracted infrared spectra have
peak absorbances in the 2.0 to 3.0 range. Under the
assumption of boxcar or triangular apodization (see
below), it has been shown that the FTIR spectrome-
ter behaves non linearly and gives large artifacts in
the difference spectra. On the other hand, the data
of Mitsui et al., as well as our own preliminary work,
seem to be meaningful. We hypothesize therefore
that the Happ-Genzel apodization function, which
we used, has a very different mathematical effect on
the computed infrared spectrum and, in particular,
does not give rise to large artifacts. It is the objective
of this paper to check this hypothesis by calculating
and comparing the effects of boxcar, triangle, and
Happ-Genzel apodization functions upon FTIR dif-
ference spectra.

1.2 ORIGIN AND IMPORTANCE OF APODIZATION
FUNCTIONS. — Each data point in an interferogram
contains some information about all the data points
in the Fourier transformed spectrum. Real spectro-
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meters, with only a finite maximum optical path
difference, do not utilize all of the true interferogram
data points, which exist over an infinite range of
optical path differences. Therefore, there is some
degree of error in all of the spectral data points.
Apodization is the attempt to make do with the
available information by multiplying the collected
interferogram by a given function before Fourier
transformation. Outside of the data collection range,
all apodization functions are defined to be identically
equal to zero. Different apodization functions may
be chosen for different purposes, such as suppressing
side lobes or minimizing smearing of the central
absorption peak. Rabolt and Bellar [2] give useful
information on side-lobe magnitudes and central-
peak broadening obtained with three common apodi-
zations, the boxcar, triangle, and Happ-Genzel
functions, which are listed in detail in section 2.2
below.

Boxcar apodization arises naturally in a Michelson
interferometer with finite mirror travel, because it
multiplies collected interferogram data points by
unity and is defined to be zero outside the range of
mirror travel. One may ask, however, why triangu-
lar, Happ-Genzel, or any other function might be
preferred in any particular case. Norton and Beer [3]
analysed the « quality » of some 1150 different
trigonometric and algebraic apodizing functions in
terms of a Filler diagram. Relative lobe magnitude
was plotted against relative central-peak half width.
Each apodizing function is represented by one point
on the Filler diagram. There appeared to be a
boundary, to the left of, and below, which no
function-point exists. Norton and Beer challenged
the scientific community to formulate an existence
proof for this mathematical boundary, to describe
that boundary analyticaly, and to specify classes of
apodization functions falling on that boundary. They
noted that the commonly used triangular apodization
was far from the apparent optimum line on the Filler
diagram. The desired mathematical proofs have not
appeared.

Meanwhile there have been significant advances
in our knowledge of apodization effects in selected
areas. Anderson and Griffiths [4] and Griffiths [5]
demonstrated by calculation and experiment the
effect of boxcar and triangular apodization on FTIR
difference spectra. These results were based on a
calculation procedure first defined in reference [6].
They showed that the apparent peak absorbance

AL? was a function of the true peak absorbance

A1, as well as pg (ratio of nominal resolution to
full bandwidth at half-height) and the particular
instrumental line shape (ILS) function. The ILS
function is the Fourier transform of the apodization
function. They suggested that the basic requirement
for good spectral subtraction is not photometric
accuracy but merely a linear AC*> versus A"
response (for fixed ps and ILS function), i.e., that
Beer’s law apply to the apparent bands in the
absorbance range of interest. For sufficiently large
AL, the response curves become nonlinear, and
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complete spectral compensation becomes impossi-
ble. Complete spectral compensation in this sense
means the attainment of an identically zero diffe-
rence spectrum from the scaled subtraction of spectra
of two similar samples of different thickness. We
refer to excursions from zero of such a perfectly
scaled subtraction as spectral artifacts arising from
apodization. Clearly, artifacts can be due to other
sources (sample imperfections or electronic noise)
which fall outside the scope of this discussion.

1.3 UNRESOLVED ISSUES IN APODIZATION. — Two
problems present themselves: (1) In none of the
extant literature is the effect of Happ-Genzel apodi-
zation on difference spectra calculated, even though
this is one of the most common functions used in

practice. The Happ-Genzel response curves, A,(??

versus AO(‘), for several p values are similarly

lacking. (2) Perfect spectral compensation is impossi-
ble under some conditions, such as for intense
bands. However, a certain spectral artifact level may
be tolerable in a given experiment. For example, the
experimentally determined artifact levels in refe-
rence [7] were plotted on vertical display scales of
zero + several hundreths of an absorbance unit,
suggesting that experimental difference-spectral
excursions much greater than about + 0.05 absor-
bance unit would not be interpreted as artifacts.
Although a large number of calculated and experi-
mental difference-spectra artifacts are available in
references [4] and [5], there is no concise and
comprehensive tabulation of artifact sizes as a func-

tion of 4,0, p <= 1 / pG> , and ILS function. Thus

there is no ready reference for selecting an apodiza-
tion function for difference-spectrum analysis and
predicting the size of the corresponding artifacts.
Such a reference is essential in order to gauge the
adequacy, as opposed to the completeness, of spec-
tral compensation.

The importance of these calculations may be
judged from the following observations. Any devia-
tion from Beer’s law for the apparent peaks will
result in finite difference spectra peaks. These peaks
can derive from (1) adventitious factors such as are
listed in references [8] and [9] and are generally
known : beam polarization and sample nonuniformi-
ties such as non-planar faces and internal boundaries
which reflect, refract, or scatter light out of the
detector’s field of view. In addition, (2), apodization
artifacts originate when a finite spectrometer opera-
tes on samples whose thicknesses produce peak

absorbances in a non-linear range of A,(*’ versus

AO(‘). Finally, (3), if the first two sources can be

shown to be small, then the remaining, genuine,
apparent difference spectra peaks can be analysed as
arising from changes in the true peaks. In this case
the inherent sample absorption -coefficient, a,
thickness, b, or dipole concentration, ¢, must have
changed in order to give the observed difference
spectrum peak. Furthermore, if an appropriate sca-
ling factor is chosen, thickness variations may be
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cancelled, and only changes in a or ¢ need be
considered.

Careful sample preparation may take care of
problem (1). If the maximum apodization artifacts
can be determined and shown to be small, problem
(2) may be negligible, leaving real data to interpret.
Therefore it is imperative to calculate difference
spectral artifacts for several diferent p and A (")

values and to compare the results of boxcar, triangle,
and Happ-Genzel apodization. A typical nominal
resolution of 2cm~! is assumed. Bands of many
solid samples fall between 10 and 50 cm~! in full
width at half height. Therefore, we consider p = 5

and 25 (pG = 0.2 and 0.04) as bracketing cases for

typical solid-sample analysis. Several AO(‘) values
up to at least three absorbance units are considered.

2. Theoretical definition of the problem.

2.1 SPECTROMETER RESPONSE EQUATION. — We
give a brief derivation of the spectrometer response
equation. This equation relates the true spectrum to
the apparent spectrum, which is the output from an
ideal spectrometer and includes effects of apodiza-
tion. The true intensity per unit wavenumber,
B, (v), is the Fourier transform of / (&), the total
intensity due to all wavenumbers when the path
difference is 6. We introduce the dimensionless
variables x =2 wvL,y = 8/L and the functions

1(y) =T(Ly) and B,(x) =E(ﬁ), which
satisfy :

]

B,(x) =L f 1G) ey (1)

-

1(y) =ﬁr B(x) e ™dx. (2

Since data is collected over a finite range of mirror
positions we introduce the apodization function
a(y), which is equal to zero for |y |>1. We
identify the length 2 L as the total mirror travel
distance and define the apparent spectrum B, (x),
which is an approximation to the true spectrum, by
the equation :

B -5 e 10) ery. ©)

where M is a constant. This constant is determined
by requiring the integrated intensity of the apparent
and true spectra to be equal. This calculation is
facilitated by defining the Fourier pair :

o(x) =LJ~

-

o]

a(y) e”dy (4)

[

a(y)=§7lr—Lj o(x) ePdr. ()

-
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Now

J‘i B,(x) dx=f: B,(x)dx  (6)

leads to M = a(0). Thus, equation (3) becomes :

L[ a1 ey

a(x) = -
Bx. ﬁ_J‘

-

(7
o (x') dr’

Using equation (5), equation (7) can be rewritten
as:
J‘ deIBt(x") o_(xll_x)
B,(x) = =2 - . ®
j o(x') dx’'

— 00

The true transmittance T ¢'” (x), is the ratio of the
true intensity, B, (x), to the spectral distribution of

the infrared beam, J(x). The apparent transmit-

tance T ¢*7 (x) is the ratio of the apparent spectral
intensity B, (x) with the sample in place to the

apparent reference intensity when the sample is out
of the beam. Thus

T (x) =

r A&’ T () J(x') o (x' —x)
- - 09
J dx'J(x") o (x'—x)

-

Under certain conditions (see Appendix 1) the appa-
rent and true transmittances in equation (9) can be
related by the spectrometer response equation :

T (x) =

J’w de' T (x') o (x' —x)

- (10)
f dx' o (x' —x)

0
Equation (10) is a standard result often quoted [4, 5,

6, 10]. The true and apparent transmittance and
absorbance are related by :

T (x) =104
T (x) =1074¢2 ¢

(11)

In all our calculations we choose a Lorentzian line
shape for the true absorbance

Ao(t)

AWV =N
2} 41
p

(12)
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where p = pm, p = 2 yL, and v is the half width at
half height, in wave-numbers, of the band. We
calculate the apparent transmittance and absorbance
from the true functions, using equations (10), (11)
and (12) and compile a comprehensive set of diffe-
rence-spectral artifacts for bands of typical solid
samples.

2.2 ILS FUNCTIONS. — In the following equations
we list the three apodization functions and their
respective ILS functions which we use in our calcula-
tions, see equation (4). We append a subscripti = 1,
2,3toa;(x) and o;(x) to distinguish among the
three apodization functions. The apodization func-
tions, a; (y), depend on the dimensionless length,
y, which is the optical path difference divided by the
maximum optical path difference, L. The ILS func-
tions, o;(x), depend on the dimensionless fre-
quency, x =2 wvL, where v is the frequency in
wavenumbers.

Boxcar :
a(y) =1t 1yi<l (13a)
0 otherwise
o, (x) = 2L§“)‘c—"-. (13b)
Triangle :
1- 1
oy = 71T i<t g
0 otherwise
L sin® (x/2)
o,(x) =——="—7 (14b)
(x/2)?
Happ-Genzel :
¢, +c,cos(my y|<1
a(y) = {AFes(m) 1yl (15a)
0 otherwise
oy(x) =
. c . .
=2L[c1 smx+_g{ sinx smx}]. (15b)
x 2| m—x 7T+x

In equations (15a)-(15b), ¢, and c, are constants. It

should be noted that an extra factor of two was
written in the argument of the cosine in the Happ-
Genzel function in reference [2], (see Ref. [11]).

2.3 LIMITING CASES. — When the true absorbance

is weak, A (") (x) <1 for all x, and we can
evaluate equation (10) by expanding the exponential
function :

T (x) =10742 & -

=1-AM (x) In10+.... (16)
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Using this in equation (11) leads to :
T (x) =1-1n(10) x
J. dx'A M (x') o (x'—x)
x = , (17)

Lm dx' o (x'—-x)

where we have kept only the first two terms in
equation (16a). Taking the negative of the base ten
logarithm of equation (17), we have :

A @ (x) =

J'm d' A O (x') o (x' —x)
0

= = , (18)
J‘ dx' o (x'—x)
0
where use is made of log,(l-y) =
In(1-y)/In 10 and In(1-y) = —y for y<1,

with y being the right hand side of equation (17).
Equation (17) shows that the response A4 ¢*7 (x)
(the apparent absorbance) depends linearly on the
true absorbance A ¢*? (x). For a Lorentzian band,
given in equation (12), we see that the apparent
absorbance A (*7 (x) scales linearly with the true
peak absorbance A,C'?. This was observed in a
numerical calculation (Refs. [4-6]).

In the limit of strong absorbance the true transmis-
sion is essentially zero over some bandwidth = 2 «q,
and we then write :

1 O<x<xy—a
T (x) =10 XYo—a <x<xy+a (19)
1 Xpta <xX< 0.
Using this in equation (10) leads to :
T, (x) =
Z(xo—x—a)—z<x0—x+a)
=1-- , (20)

2 (=x)-Y ()
where we have introduced the indefinite integral :

T =[ame @

For the case of box car apodization, i = 1, equation
(20) can be evaluated to be :

T (x) =
si(x(,—x+a) —si(xo—x—a)

=1- m +si(x) @)
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where the sine integral function is defined as [12] :

si(2) =-12’-+f'ﬂ‘_‘dt. 23)
0

t

In all applications x > 1, so si (x) in the denomina-
tor of equation (22) is close to zero. Since x — x, and
a are independent parameters we see that
T ¢*J (x) can achieve unphysical negative values.
This is purely a consequence of apodization applied
to intense bands. Similar results can be derived for
triangle and Happ-Genzel apodizations.

3. Numerical calculation.

Values of p were chosen to bracket our range of
interest in analysing solid polymer samples. The full
width at half height (FWHM) of infrared absorbance
bands in solid polymer samples is typically between
10 cm~! and 50 cm~!. A common nominal resolution
is 2 cm™~ . Therefore p values between 5 and 25 (pg

between 0.2 and 0.04) were analysed. In addition,
p =1 results are shown for comparison with some
previous results of Griffiths [S] and Anderson and
Griffiths [4, 6]. For calculating difference spectra,
A was chosen to be 1.3, 2.0, and 3.0. The

maximum true absorbance of the reference-spec-
trum for subtraction was chosen to be 1.1 in all
cases. Several hundred data points were calculated
between x, — 5 mp and x;, + 5 7wp. As in reference

[5], the criterion for subtraction was chosen to be :

we then have

Boxcar :

0

T,(* (x) = e T (%) |

APODIZATION EFFECTS 83/

AA(x) =

(t)

=4 (x) - ('3%—) ASV (x) . (24)

0,re

Hence, the factors for scaled subtraction were 1.18,
1.82, and 2.73. It should be noted that the graphs of
AA (x) are plotted versus x — x, in all figures. Also,

the + 5 wp range of x corresponds to approximately
+16, + 80, and + 400 for p = 1, 5, and 25, respecti-
vely. Finally appendix 2 shows why the criterion is
reasonable. True peak heights and true baselines
may be assumed to scale with thickness. Baselines
(i.e. constant functions) are unaffected by the convo-
lution in equation (10). Therefore, apparent baseli-
nes scale with thickness. Thus, apparent baselines
scale with true peak heights, and equation (24) is
equivalent to a spectral subtraction based on
thickness.

For each type of apodization, we substitute for
o (x) into equation (10) the functions o;(x),
given in equations (13b), (14b) and (15b). For each
ILS function the denominator can be integrated
directly. Each of the numerators are integrated by
parts in order to avoid slowly convergent integrals.
Let the numerator of the right side of equation (10)
be N,;(x) and the denominator be D; (x), where

i =1, 2, 3 for boxcar, triangular, and Happ-Genzel
functions, respectively. Using the definitions :

Triangle :

Ny(x) = Dy(x) e 7 (2) 4

f(x —x0> =AM (x) 10 (25)
a N;(x)
= hm )
Dl(x)=‘r)dx'§?l%=w+si(x). (272)
Ny(x) = {m+si(x)} e (%) 4 r dr'si(x' —x) e T (F7%) ﬂij’xf—x")—. 27b)
Jm dx'si (x' —x) e/ (%) ——df(z; )
m+si(x) (27¢)
D,(x) =si(2x) +m—S0% (282)
. ' _ oo d "
—sz—x(’x—x_X)}e f( ’0)%, (28b)

+J°° dx’ {si[Z(x’—x)]

0
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Thus,
T (x) =
J"’ dr' {si[z(x'—x)] st (- x) }e‘f<"’“"0) —df(’;;x")
e f(n) o ~ (28¢)
m+si(2x) - EZ
Happ-Genzel :
Dy(x) =c¢[7m+5si(x)] +% R7+si(x—7) +si(x+7)]. (29a)
© , d r_
N,(x) = e f (), Dy (x) + J‘ dx' e F(=%) l(x’—xo)x
0
X [clsi(x'—x) +% (si(x' —=x+m) +si(x' —x—m) )l . (29p)
T,( (x) = () 4
© , d r_
J dx' e~ f (¥ %) L);x,)c—()) {cl si(x'—x) +%cz(si(x’ —x+m) +si(x'—x—m) )}
2 (29c)

m+cpsi(x) +% (si(x—m) +si(x+m))

In all three cases when the integrated term is
evaluated at x’ = oo, it vanishes. Equations (27c),
(28¢), and (29¢c) were used in our numerical calcula-

tions. The presence of the term df (x’ - xo) /dx' in
the integrals improves the rate of convergence. The
sine integral function was evaluated piecewise, ac-

cording to formulae 5.2.8, 5.2.10, 5.2.38, and 5.2.39
of reference [12].

4. Results.

The main purpose of this investigation is to assess
the adequacy (not the completeness) of spectral
compensation. To this end, difference-spectral arti-
facts were calculated and cataloged in figure 1
(p=1), figure2 (p=5), and figure3
(p =25). In the figures 1-3 the notation BX, TG,
and HG are used for boxcar, triangular, and Happ-
Genzel apodization, respectively. The values of

ALY were selected to be 1.3, 2.0, and 3.0. The

reference spectrum for subtraction has A, (" = 1.1
in each case.

In figures 1-3, consider first the difference-spec-
tral artifacts arising from boxcar apodization. Subs-
tantial positive-going artifacts exist for p =1, in
agreement with the previous result in reference [5].
The band for A,C'? = 3.0 cannot be calculated at

p =1, because the apparent transmittance has
become negative. For p =5 and A, ("’ =1.3 and

2.0, the artifacts are two orders of magnitude smaller
in amplitude, at about 0.0005 and 0.008, respecti-
vely. For p =5 and A,('? =3.0, the maximum
artifact amplitude is about 0.1 absorbance unit. For
p = 25, the envelopes inside which the artifacts exist
are about 0.002, 0.01, and 0.10 absorbance unit in
maximum amplitude for AO(‘) =1.3, 2.0, and 3.0,

respectively. (A detailed view of the oscillations
within these envelopes is provided below.) Thus we
conclude that experimental difference-spectra peaks
much greater than 0.1 absorbance unit in boxcar
apodized spectra obtained for p between 5 and 25
and for sample/reference spectrum intensities of up
to 3.0/1.1 cannot be attributed to apodization of
Lorentzian absorbance bands. Difference-spectra
peaks on the order of 0.1 absorbance unit or less
might be attributable to apodization effects under
these conditions.

In figures 1-3, consider next the difference-spec-
tral artifacts for triangular apodization. Relatively
large, negative-going artifacts up to 0.8 absorbance
unit in amplitude arise for p = 1. The results are not
very much better for p = 5. (The result for p =5

(pG = 0.2) and A,(*? = 1.3 is in agreement with
that in Ref. [5].) For p =25 we again obtain
envelopes within which the artifacts exist and which
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0.02—

AA (ABSORBANCE)

0.02— 0
AY =13
00 HG 0
01— 0
AY = 20
00 HG 0
02 v
()
PAUSSEYo
: W
i | |
-16 -8 0 8 16

DIMENSIONLESS FREQUENCY, x-x,

Fig. 1. — Difference-spectra artifacts, AA, are graphed
versus the dimensionless frequency, x — x,, relative to the

true peak position, x,, for the case of p = 1.

are 0.002 and 0.06 in amplitude for A,C*? = 1.3 and

2.0, respectively. At AO(‘) = 3.0 the artifact ampli-

tude is again large, at 0.4 absorbance unit. Thus, we
conclude that experimental difference spectra of
intense, triangularly apodized spectra obtained for p
between 5 and 25 would have to be significantly
greater than 0.8 absorbance unit to avoid the possibi-
lity of being spectral artifacts.

In figures 1-3, consider finally the difference-spec-
tral artifacts for Happ-Genzel apodization. The
artifact amplitudes for p = 1 are again sizeable, but
not quite as large as in the preceding two cases. It is
interesting to note that Happ-Genzel apodization
leads to double-negative-lobed artifacts, which are
quite different from the previous cases. For p =5,
the artifact amplitudes are 0.002, 0.015, and 0.05 for

A = 1.3, 2.0, and 3.0, respectively. The first two

of these numbers are slightly worse than for the
boxcar function, but the last number is only half as
large as for the boxcar function. Both boxcar and
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0.0004

0.0

0.004 - ”

AA (ABSORBANCE)

0.002

—0.006

-0.03

-80 -40 0 40 80
DIMENSIONLESS FREQUENCY, x-x,

Fig. 2. — Difference-spectra artifacts, AA, are graphed
versus the dimensionless frequency, x — x,, relative to the

true peak position, x,, for the case of p =35.

Happ-Genzel apodizations are clearly superior to
triangular apodization. It is at p = 25, however, that
Happ-Genzel apodization is clearly seen to be the
best of the three functions studied. Here, the
maximum amplitude of the artifact envelope
(A,S*? = 3.0) is seen to be 0.02. Thus, we conclude

that experimental difference spectra peaks much
greater than 0.05 absorbance unit in Happ-Genzel
apodized spectra obtained for p between 5 and 25
and for sample/reference sample intensities of up to
3.0/1.1 can not be attributed to apodization of
Lorentzian bands. Difference-spectra peaks on the
order of 0.05 or less might be attributable to
apodization effects.

The data of figures 1-3 are summarized in table I.
Details of the oscillations occurring in some of the
p = 25 difference spectra are shown in figure 4.

We discuss the deviation of A <*> (x) from
A (D (x) in terms of two distinct error criteria.
First, a local measure of error which relates the
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Fig. 3. — Difference-spectra artifacts, AA, are graphed
versus the dimensionless frequency, x — x,, relative to the

true peak position, x,, for the case of p = 25.

differences in true and apparent peak intensities
(barring phase shifting) is provided by the graph of
Af? =A@ xo) versus A = A (D (x%),
where x, is the dimensionless peak frequency. For
small A,C*> and all apodizations the A,C* versus
A (Y graph is linear, see equation (18). Deviations
occurring for larger AO(') are perhaps better dis-
cussed in terms of a second distributed error criteria.
A distributed measure of error, E, versus A", is
defined by :

E=r (A (x) 4D (x)}2dx. (30)

0

The E criterion is in some cases superior, because
the rapid oscillations (compared to the bandwidth)
seen in some of the p = 25 difference spectra can
result in phase-shifting (of A ¢*> (x) relative to

DIMENSIONLESS FREQUENCY, x-x,

Fig. 4. — Details of the difference-spectra artifacts from
figure 3 are graphed versus the dimensionelss frequency,
x — x,, relative to the true peak position, x,.

A< (x)) and apparently linear A (*” versus
A" graphs even though E is large.

Now we turn our attention to figure 5, which are
the AO(") versus AO(‘) graphs for boxcar-apodized
spectra. As has been previously pointed out in
references [4] and [5], the boxcar A, (*? (Ao(‘))
function represents a nearly linear response for
p =5 or 25 for A2 <3.0. Positive deviations

occur for smaller p values, as has been seen in the
preceding difference spectra. The boxcar E versus

AS"? results are shown in figure 6. There is a rapid
increase in E for AO(‘) above 2.5, 3.0, and 1.5
absorbance unit for p = 25, 5, and 1, respectively.

In figure 7 the A, <*? versus A" graph is shown
for the case of triangular apodization. In agreement
with references [4] and [5] there is a large deviation
from linearity at modest AO(‘) values. Similarly, the
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Table L
Maximum artifact sizes arising from apodization of a Lorentzian
band with various ILS, p, and 4§" (*)

Figure Apod Fn p A{Y (Sample) Max Artifact Size (%)
1 1 (Boxcar) 1 1.3 + 0.03
1 1 1 2.0 + 0.50

— 1 1 3.0 (diverges)
2 1 5 1.3 + 0.0004
2 1 5 2.0 + 0.008
2 1 5 3.0 + 0.09
3 1 25 1.3 < £ 0.002
3 1 25 2.0 + 0.01
3 1 25 3.0 + 0.10
1 2 (Triangle) 1 1.3 — 0.03
1 2 1 2.0 — 025
1 2 1 3.0 — 0.80
2 2 5 1.3 — 0.015
2 2 5 2.0 - 015
2 2 5 3.0 — 0.80
3 2 25 1.3 — 0.002
3 2 25 2.0 — 0.06
3 2 25 3.0 — 040
1 3 (Happ-Genzel) 1 1.3 —+—0.02
1 3 1 2.0 -+ —-0.10
1 3 1 3.0 —+—-030
2 3 5 1.3 —+— 0.002
2 3 5 2.0 —+—0.015
2 3 5 3.0 —+—0.05
3 3 25 1.3 < 4 0.002
3 3 25 2.0 + 0.002
3 3 25 3.0 + 0.02

(1) Affer = L1

(®) Signs indicate characteristic artifact behaviour : positive for boxcar, negative for triangle, double negative lobes for
Happ-Genzel, « + » for apparent rapid oscillations.
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Fig. 5. — The apparent peak absorbance of boxcar-apodi-
zed bands is graphed versus the true peak absorbance for

p=1,5, and 25.
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Fig. 6. — The integrated error, E, for boxcar apodized
bands is graphed versus the true peak absorbance for
p=1,5, and 25.
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Fig. 7. — The apparent peak absorbance of triangularly
apodized bands is graphed versus the true peak absorbance
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quantity, E, (shown in Fig. 8) increases rapidly after
AL =15, 1.0, and 0.5 for p =25, 5, and 1,
respectively.
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Fig. 8. — The integrated error, E, for triangularly apodi-
zed bands is graphed versus the true peak absorbance for
p=1,5, and 25.

Finally, the excellent linearity of the A,C*” versus

A graph for Happ-Genzel apodization for
p = 25 and 5 is shown in figure 9. There is a slightly
nonlinear curve for p = 1, but as noted, the spectros-
copy of (condensed-phase) polymers is almost
always carried out between p =5 and 25. In
figure 10, the quantity, E, is seen to greatly increase
above A" = 3.0, 2.0, and 0.5 for p =25, 5, and

1, respectively.
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Fig. 9. — The apparent peak absorbance of Happ-Genzel-
apodized bands is graphed versus the true peak absorbance
for p =1, 5, and 25.
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5. Summary.

Difference spectrum analysis is an important tool in
the transmission-mode infrared spectroscopy of
transparent or translucent solid samples, but such a
technique cannot be used indiscriminantly. Adventi-
tious artifacts may appear from beam polarization
and sample nonuniformities such as non-planar faces
and internal boundaries which reflect, refract, or
scatter light out of the detector’s field of view. These
pitfalls must be carefully avoided on a case by case
basis. Then it must be considered what artifacts are
introduced by the measurement process, which has
been the topic of this paper. We have used
Lorentzian absorbance bands to determine spectral
artifacts, but we expect qualitatively similar results
for Gaussian or combination Gaussian-Lorentzian
bands.
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It was shown that triangular apodization of
Lorentzian bands leads to a high degree of « unsub-
tractibility », where up to 0.80 absorbance unit
artifact amplitudes can be introduced for typical
solid samples (p =5 to p = 25). These negative-
going artifacts manifest themselves as nonlinear
AS? versus ALY curves which fall distinctly

below the (photometrically accurate) 45° slope. The
quantity E, which is related to the total area of the

spectral artifacts, rapidly increases for Ao(‘) above

1.5, 1.0, and 0.5 absorbance unit for p = 25, 5, and
1, respectively.

Boxcar apodization is better than triangular apodi-
zation for difference spectrum analysis, giving at
most a 0.10 artifact amplitude (p =5 to p = 25).
These artifacts manifest themselves as nonlinear
AL versus AS'? curves which rise above the
(photometrically accurate) 45° slope. The quantity,
E, rapidly increases for A,('? above 2.5, 3.0, and
1.5 absorbance unit for p = 25, 5, and 1, respecti-
vely.

Happ-Genzel apodization is the best of the three
functions investigated giving a maximum artifact size
of 0.05 (p =5 to p = 25). These artifacts manifest
themselves as A,(*> versus A,C'"? curves which lie

close to the 45° slope for p = 25 to 5. In contrast, the
p =1 result is slightly nonlinear and decidedly
below the 45° slope. Moreover, in order for any
subtraction band to be attributable to Happ-Genzel
apodization (apart from the rapid oscillations
common to the apodization of all intense bands) a
characteristic double lobed difference band must
appear. This follows from the « triple boxcar »
nature of Happ-Genzel apodization (see Eq. (15b)).
Thus there can be in principle no objection, on the
grounds of Happ-Genzel apodization effects, to the
evaluation of difference spectral bands much greater
than 0.05 as being real data. Furthermore, this is
true for subtractions of bands of intensity 1.1 from
bands of intensity 3. As long as one is operating on
bands with p between 5 and 25, the small 0.05
« unsubtractibility » due to Happ-Genzel apodiza-
tion is likely to blend in with all the other experimen-
tal factors to give a small residuum of error in the
zero baseline of the difference spectra.
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Appendix 1

SIMPLIFICATION OF THE SPECTROSCOPIC RESPONSE
EQUATION. — In equation (9) note that the lower
limits can be set equal to zero, because J(x') is
zero for x < 0. Furthermore, for an absorption band
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with halfwidth y centred at wavenumber v, let
Xg=2mvyL and p =2 yL be the dimensionless
position and characteristic width of the band. Let

Xgy =2mL( V. — Vmin) be the dimensionless

spectral width of J (x) where v, and v, are the
band maximum and minimum wavenumbers. We
can simplify the denominator of equation (9) as
follows. The function o (x’' — x) is peaked at x’ — x
and has a characteristic width of the central peak
which is of the order of unity. On the other hand the
spectral width, x,, of J(x) has a characteristic
width x,, > 1. Furthermore, J(x') varies slowly
with x'. For this reason we can find a positive
constant, A, which can be used to break up the
x' integration into three regions,

I:0<x'<x-4,
MI:x—-A<x'<x+ 4,
M:x+A<x'<o0,

and which satisfies the condition 1 < A < x,,,. In the
denominator of equation (9) the integrals in regions
I and III are negligible in comparison with the region
II integral. Making a variable change t = — x' + x in
region I of integration yields :

f](x——t) o (1) dr,

which is small because J(y) —» 0 for y -0 and
because o (¢t) is small for A> 1. Making the
variable change ¢ =x'—x in the integration of
region III yields :

Jml(x+t) o (1) d,

A

which is again small because J(y) -0 and
o (y) -0 for y » oo . In region II one can expand
J(x') =J(x) +J'(x) (x—x") since J(x')
has been assumed to be slowly varying. In this region
J'(x) is of the order of J(x)/xSW so that :

J(x') =7 (x) [1 +o<;1_>]. (AL1)

SwW

Substituting these results into the denominator of
equation (9), we have :

J(x) ijAa(x’—x) dx' =
~J(x) jwa'(x'—x) dr' (Al2)

where we have extended the limits and keep only the
leading term. Using the same arguments for the
numerator in equation (9) we can cancel the spectral
function J (x) in the numerator and denominator to
arrive at equation 10.
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Appendix 2 A (x-0)

TAM (x50)
BASELINE EFFECTS IN DIFFERENCE SPECTRA. — AZ (x - 0)
Here we show that including a constant baseline c. A5 +0 ALY
proportional in magnitude to the peak heights does = : . (A2.3)

not affect the difference spectra. This is important to
note, because some experimental procedures derive
their scaling factors from the ratio of baseline
magnitudes. Consider the apparent absorbances,
A (x) and A,X* (x) of two bands :

A (x) =d; + A, (x)  (A21)

AL (x) =dy+ ALY (x), (A22)

where A;(* (x) are the Lorentzians, and d, are
the constant baseline absorbances (i =1,2). Let-
ting the true Lorentzian peak absorbances be
A7, we assume that the baselines d; = c. A,
where ¢ is a constant. The factor F for scaled
subtraction could be taken as :

T ASD 40 ALY

where x —» 0 refers to a wing region. Now the
difference spectrum is :

A (x) —=F. A (%) =
=c. A5 +4, (%)

Al D (2
_ » t a
A0 [c Agy? + A, (x)]
ACtD
— A4 01 a
=AM (x) _Ao(zt) AL (x), (A2.4)

which is the criterion used in the text and in
reference [5]. This shows that baselines introduced
in this fashion do not affect the artifacts in the
difference spectra.
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