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Mechanics of cycling

J.-P. Mariot

Département Génie Mécanique, Institut Universitaire de Technologie, 72017 Le Mans Cedex, France

(Reçu le 10 mai 1983, révisé le 23 novembre, accepté le 5 janvier 1984)

Résumé. 2014 Cette analyse mécanique de la bicyclette tient compte des forces de frottements des pneus sur le sol,
de la traînée aérodynamique de l’air, de la pente de la route et du vent L’étude du mouvement est décrite lorsqu’un
couple moyen constant est appliqué à la roue arrière. Pour un cycliste de 72 kg et une bicyclette de 10 kg, des
abaques à points alignés illustrent le mouvement à vitesse constante.

Abstract 2014 This mechanical analysis of cycling includes frictional forces between the tires and the ground, and the
influence of the air drag force. The road gradient and the wind are taken into account as well. The movement
is studied when an average constant torque is applied on the rear wheel. For a 72 kg cyclist riding a 10 kg racing
bicycle, aligned charts are given to illustrate the constant speed movement.
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1. Introduction.

Since its invention, a little more than a century ago,
the bicycle has been used everywhere in the world and
several million are built every year. It has evolved little
over the years, as its original shape was both simple
and functionally sound. The use of pneumatic tires
that permitted improvement in both rolling perfor-
mance and comfort, then the invention of the gear-
change thanks to which a cyclist now can adapt his
effort to such difficulties as the wind or hill climbing,
were important stages in its development. Recently,
wind-tunnel experiments have been carried out by
Shimano in Japan and Gitane in France to diminish
the influence of air friction. Through this develop-
ment can be seen the fundamental elements to take
into account when designing a bicycle : rolling resis-
tance (solid friction) and air resistance (fluid friction);
as well as the inertia of the various parts. It should be
added, though, that mechanical losses due to the ball
bearings are now negligible considering the excellence
of modern products.
The invention of the bicycle is probably as impor-

tant as that of the wheel (a little over 5 000 years ago)
because a cyclist requires 5 times less power [1] than
a walker. It seems, considering today’s energy pro-
blems as well as ecological preoccupations, that the
bicycle has a promising future. It is nonpollutant and
for a 6 m/s speed on a level road it requires only a
100 W power, i.e. the equivalent of the power radiated
by the sun over a one square meter portion of our
planet.

But what are the laws that govern the working of
a bicycle ? The laws of classical mechanics of course,
and they are older than the bicycle itself. Unfortuna-
tely, from the beginning of mechanical analysis, this
machine has defied scientific logic : to this day, its

stability has not been thoroughly explained [2-5].
From a mechanical model we shall try to find out

the relations among power, effort and speed with the
following parameters in mind : rolling resistance, air
resistance, the cyclist’s weight and that of the machine,
the speed of the wind and the gradient of the road ;
and we shall compare the relative influence of these
various parameters thanks to quantitative conside-
rations. This is the recommended procedure when
designing a bicycle.

2. Model.

The cycle-cyclist set can be considered to be composed
of three solids (1 ), (2) and (3) as shown in figure 1 :

(1) is the front wheel of mass mi and moment of
inertia h about 0 1 ;

(2) is the réar wheel of mass m2 and moment of
inertia 12 about 02 ;

(3) is the cyclist-frame set of mass m3.
The total mass of the cycle-cyclist set is thus found

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/rphysap:01984001904034900

http://www.edpsciences.org
http://dx.doi.org/10.1051/rphysap:01984001904034900


350

Fig. 1. - Extemal actions on solids (1), (2), (3) and

(1) + (2) + (3). Air action is just represented by an arrow.
Ground actions are represented by forces R1 and R2 apphed
at J and J2.

The following hypotheses are considered in this

paper :

a) The movement is such that all applied forces lie
in the vertical plane and all applied torques are per-
pendicular to this plane.
b) The motion equation will be set thanks to a) but

solved for a mean constant torque applied to the
rear wheel.

There are two variables for the movement : the
variable of translation x and the variable of rotation 0
that depends on x in the case when there is no slipping
of the wheels on the ground. Such a slipping will not
very often occur for cyclists anyhow.
The frame of reference (g) = (Oxyz) with unit

vectors’ i j, k is a galilean frame of reference.
The frames (Oi, x’i, y’i, z) (i = 1, 3) are barycentric

frames for solids (1), (2) and (3).
The frames (Oi, xi, yi, z) (i = 1, 2) are the frames

fixed in solids (1) and (2).
The variable can now be represented by (002)x = x

and the 0 variable by 0 = (Oix’i, Oixi) for both wheels
(1) and (2), assuming that the two wheels have the
same radius (see Fig. 1) (r = 0.342 m).

3. Motion study.

It is known from mechanics [6, 7] that a mechanical
action on a solid (S) can be represented by a system
of forces which can be reduced to a « torsor », or
wrench [8].

The torsor of mechanical actions { Fg }M is defined

by {R MM } where the (g) letter is standing for « gali-
lean », R is the vector sum of forces applied to the
solid, MM is the total moment of forces with respect
to M. If this mechanical action is calculated about
P instead of M, we have :

Similarly it is possible to define the following three
torsors :

03C9gS is the galilean instantaneous angular rotation and
vgG is the galilean velocity of the centre of mass G.
If this torsor is calculated about P we have

b) The kinetic torsor { PgS }G = mvG where
mvgG is the momentum of the solid (S) i.e. the product
of the mass m of the solid (S) by vgG and IG is the
moment of inertia of the solid about the axis Gz.

(This applies if all forces lie in the xy plane (see sec-
tion 2).)

c) The dynamic torsor { Dgs }G - mJG where
Je is the galilean acceleration of G, and 03C9gS the deri-
vative with respect to time of ws.

Then, Newton’s second law can be written [6, 7] :

leading to 6 scalar equations. For our present study
where the only parameter is x (1), it is easier to use
the energy-power theorem [6, 7] :

Pg is the galilean power of mechanical actions applied
to the solid (S) and EgC(S) is the galilean kinetic energy
of (S).
Equation (b) is a scalar equation. It is then easier

to handle than (a) which is a torsor equation i.e. 6

scalar equations but gives less information especially

(1) 03B8 is a function of x (cf. 3.2).
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for calculation of unknown external actions applied
to (S).
The galilean power [6, 7] of mechanical actions is :

where the star (*) is the product of the two torsors and
the point (.) is the scalar product; obviously the star
product is independent of the point where it is calcu-
lated. The reader may verify this assertion by calcula-
ting R. VgP + MP. ws where P is an arbitrary point.
The galilean kinetic energy [6, 7]

is the sum of the translationnal energy 1 2 mv2gG and the
rotational energy 1 2 IG ml2.

3.1 ANALYSIS OF EXTERNAL ACTIONS APPLIED TO THE
SOLIDS (1), (2) AND (3). - These actions are (see
Fig. 1) :

a) T he road action on the wheels :

where the lower subscript i is 1 or 2 according to the
front or rear wheel, Ki is the orthogonal projection of
Oi on the road, T, and Ni are tangent and normal
components of Ri, Ci k is the torque coming from the
rolling friction. Let Ji be defined by Ki Ji = bi.

Let us calculate b so that

Hence b = Ci/Ni ; because Ci and Ni are positive,
ô is positive. This shift b of the force Ri shows the
rolling friction torque and characterizes the rolling
friction. Most measurements of this torque give directly
Cr = blr which we call the friction rolling coefficient.

b) The weight :

where Oi is the centre of mass of solids (1), (2) and (3),
mi the respective mass, and g the gravity acceleration
vector.

c) The air action :

where Dri is the air drag force and Cai the ventilation
torque.

d) The actions between solids :

for i = 1 it represents action of (3) ~ (1),
for i = 2 it represents action of (3) ~ (2),
for i = 3 it represents action of (1) ~ (3),

and (2) ~ (3).

From Newton’s third law Lg = - Li - Lg. More-
over Ci = 0. Denoting by CrW the propulsive torque,
applied to the rear wheel through the chain, we have
C2 = - CrW (we take Crw &#x3E; 0).

3. 2 POWER OF EXTERNAL ACTIONS AND KINETIC ENERGY.
- To calculate Pg and Eg we need the 3 kinematic
and kinetic torsors (see Eq. (c) and Eq. (d)).

The kinematic torsor { Vg }Oi = 03B8i k xi } 
where

bi k is the galilean angular velocity of solid (i) ;
03B81 = 02 = 0 because front and rear wheels have the
same radius and there is no slipping. 03 = 0 because
solid (3) does not rotate. The galilean velocity of Oi
is xi. 

Thé kinetic torsor { Pg }Oi = {mixi Ii 03B8i k} where /,

is the moment of inertia about Oi.
The rolling without slipping conditions can be

derived from the nullity of the instantaneous velocity
in K 1 (or K2)

Hence the condition is

In section 3. 1 we have calculated

(it should be noted that { Gg3 } = 0). From equation (c)
we have

Hence

where s is the road gradient.
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The fluid term is indeed negative for Dri is negative
and Cai is positive. Usually one sets :

where p is the air volumic mass, S the frontal area of
the bicycle-cyclist solid, Cx the drag coefficient and
X2 the square of the velocity.

is the power applied to the rear wheel through the
chain. Equation (2) becomes

From equation (d), we get the galilean kinetic energy

Hence

With the no slipping condition, equation (5) becomes :

where meq = m + r 2 is called the équivalent

mass.

3.3 T’HE MOTION EQUATION. - According to equa-
(b) and from equations (6) and (5) we obtain the motion
equation :

x is the acceleration of the cyclist. The above equation
is in agreement with reference [9] where only the pro-
pulsive torque was taken into account (p = Cr =
s = 0), and represents the linear movement of a solid
of mass meq(meq is close to m) with a velocity x under
the effect of a force Crw/r on a gradient s with fluid
and solid friction. This model can be easily adapted to
a runner [10] in which case fluid friction is about the
same magnitude, considering the similar speeds
reached for sprints, but solid friction is more impor-
tant.

3.4 DISCUSSING THE MOTION EQUATION IN TERMS OF
THE VARIOUS PARAMETERS.

3.4.1 Equivalent mass. - It has just been seen that

Typically Il and 12 for light aluminium wheels
fitted with 250 g tubular tires are approximately
0.1 kgm2 leading to an equivalent mass of 83.7 kg
(82 + 1.7). Under such conditions saving 100 g on

each tire gives 0394meq meq = 0.4 83.7 = 5  10- and Am
2.5 x 10- 3.

This mass effect on velocity will be examined in
section 4.2. Mass mainly matters in terms of accelera-
tion (meq Ï) and road gradients (mgs) (see Eq. (7)).
In bicycle racing for instance, where accelerations are
frequent, the lighter the bicycle, the better - so long
as the rigidity of the frame is preserved. If the bicycle
lacks rigidity, the mechanical efficiency is impaired.

3.4.2 Air influence. - The air volumic mass depends
on temperature and pressure mainly. It decreases

slightly when humidity increases. Under usual cir-
cumstances

The Cx factor depends mainly on the cyclist’s posi-
tion. What matters in fact is rather the SC,, factor.
Loose clothing such as rain equipment drastically

increases thls factor ; the same applies to a bicycle
fitted with front bags. This SC. factor has been measur-
ed experimentally in a wind-tunnel [11] with a 72 kg
cyclist pedaling on a 10 kg racing bicycle. Figure 2

Fig. 2 (*). - Various SCx factors for different cycling
positions. These experiments were carried out at « Institut
Aérotechnique de St Cyr » (France). A small SCx is obtained
for a very low position of the elbows and the back as flat
as possible.

(*) For figures 2, 4, 5, 7 results are given for a 72 kg cyclist
riding a 10 kg non profiled bicycle. International units are
used. Charts have been calculated with a HP 97 calculator.
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shows the results obtained for 6 positions from the
touring position (SC. = 0.43 m2) to the crouched

racing position (SCx = 0.36 m2). This measured SC,,
represents an average; indeed, while pedaling, the

cyclist presents a variable area to air depending on
whether his feet are in the upper-lower position or
median position. Approximately two thirds of energy
losses [11 through fluid friction are due to the cyclist
himself. Consequently, the profiling of a racing
bicycle will bear on only about one third of the
remaining fluid friction losses.
The profiling of the bicycle on which B. Hinault

(the 1980 world champion) races saves 70 W [11] at a
13.8 m/s velocity compared to a similar but unprofiled
bicycle. This includes a significant saving due to

elliptic instead of circular spokes, and using 28 spokes
rather than the usual 36 for the front wheel. This

saving has been obtained through measuring the Dri
drag force and the Cai ventilation torque of a wheel
put in a wind-tunnel [12]. At 13.8 m/s this 70 W is
about one tenth of the total power needed by the

cyclist, leading to a 3 % velocity gain P - 3 2013 )
at 13.8 m/s. For the same power a 13.8 m/s velocity
thus becomes 14.2 m/s on a profiled bicycle.
For a wind velocity w on the road, t 03C1SCx i2 must

be changed to i 03C1SCx(x + W)2 when the wind is

parallel to the cyclist’s velocity (with a favorable wind
w  0). Side wind is rather difficult to consider
because one should measure SCx cos 03B2, 03B2 being the
angle between the cyclist’s velocity and the wind
velocity [13].

3.4.3 Rolling resistance. - The Cr factor depends
on the road surface [1] and the tires. For excellent
tubular tires [11], it can be lowered to 0.008; and,
under normal circumstances, it is found to be inde-

pendent of the weight and the speed.

3.4.4 Propulsive torque. - The cyclist’s power is

conveyed through the pedals. Figure 3a shows the
normal (FN) and tangent (FT) components of the
force F applied by the cyclist on the pedal. The Crw
torque is only produced by the FT component as the
FN normal component has a zero power. Figure 3b
shows the diagram of the tangent and normal compo-
nents which have been obtained using dynamometric
gauges fitted between the cyclist’s feet and the pedals
[14]. From the (FT) diagram the relation between
the maximum force (Fmax) and the mean force (Fm)
is found to be 1.7 Fm (2), rather close to 1.57 corres-
ponding to a sinusoidal variation of the FT force. The
mean torque produced by the cyclist is therefore lFm
where 1 is the crank length. The corresponding power
is - lFm  (see Eq. (c)) where yk is the angular
rotation of the crank-wheel (ÿ as à is negative). Let il
be the efhciency of the chain, the power Prw transmitted

(2) This holds for 0  y  1800 for one pedal.

Fig. 3. - Tangent FT and normal FN force according to
the angular position of the crank-wheel. The cyclist’s feet
were firmly strapped to the pedals fitted with toeclips.

to the rear wheel is thus found to be - ~lFm . If Te
and Tr denote the number of teeth of the crank-wheel

and of the rear wheel, we have ’ - 03B8 Tr T.’ y 
T

The gear d is the distance covered by the cyclist for
one crank-wheel revolution. Hence

From (Eq. (3)) where Prw = Crw x r and équation (1)

we obtain Crw = ~lFm Tr T. Considering a sinusoidale
variation of the force FT applied on the pedal i.e.

F... = n F. and using équation (7) we have

3.4. 5 Comparison of the influence of the various

parameters. - Figure 4 shows the variation of speed
depending on the various losses. Rolling friction

losses, linearly depending on velocity (dotted lines
in Fig. 4), are slight and correspond approximately
to losses in a 1 % uphill gradient. C, and s have the
same bearing upon the motion equation.
On a level road (with no wind) losses due to rolling

friction and air friction are equal when speed is about
6 m/s. This corresponds to a 100 W cyclist’s power.
When going faster fluid losses go up and at a 10 m/s
speed they are four times more important than solid
losses.

Although linear, losses due to uphill gradients
matter a great deal considering that at a 10 m/s speed,
fluid losses are equal to gradient losses for a 3 %
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Fig. 4 (*). - Comparison of the influence of air and wind resistance, road gradient and rolling resistance. Power of the
various losses is drawn versus speed.

gradient. For the avefage cyclist climbing an uphill
gradient of 5 % or more, gradient losses are much
more significant than fluid friction. Reducing the
weight of the cyclist and bis machiné will increase
efficiency in the gradient losses case.
For a given uphill gradient, an unfavorable wind

(w &#x3E; 0) causes the speed to decrease drastically as
shown on figure 4 for a 3 m/s wind speed.
Wind and uphill gradients are thus meaningful

elements when cycling.
It is easy to understand that the use of such dia-

grams is a complicated matter. So we have appended
aligned charts which are easier to handle. Charts [15]
are used for the graphic resolution of algebraic
equations. Let j’(x, y, z) = 0 be such an equation.
The problem is to calculate z if x and y are known.
This calculation is graphically made with a ruler in
the case of aligned charts. For example figure 7
shows the relations among the power applied to rear
wheel PrW’ the speed of the cyclist V, and the road
gradients in %. If V = 5.45 m/s for a level road, one
finds Prw = 77 W (straight line with circles on figure 7).

4. Solving the motion equation

In keeping with section 3.4.2 we adopted an averaged
value for the SC. factor; we shall also average Crw
on a crank-gear revolution (lasting usually between
0.5 s and 2 s); and we shall assume moreover that
this Crw value is time independent. Two cases should
be taken into account depending on whether the
speed (x) is variable or not.

4.1 TIME-DEPENDENT SOLUTION (VARIABLE SPEED). -

Setting

the motion equation (Eq. (7)) becomes

Equation (10) may be reduced to a simple linear
differential equation when setting V = je : the solution

of this équation is : V = /-j tanh AB t taking
x = i = 0 as initial conditions. Figure 5 shows how

Fig. 5 (*). - Speed variation on level road for a 150 N
maximum force applied on the pedal and a 7 m gear for
two SC. values. The chain efficiency fi is 0.97.
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the speed varies with time on a level road for two
SC,, factors and Fmax = 150 N. As t goes to infinity

V will reach B which is the limit speed (see next
section). 

Usually, a cyclist will apply a large torque when
starting then will relax his effort ; in fact, a cyclist
will tend to ride so that his applied power is as steady
as possible. In figure 5 where F..,, is constant, the

applied power, which is Prw/~, is increasing with time
similarly to speed.
4.2 VELOCITY EQUATION (STEADY SPEED). - For a
steady speed Ï = 0, and we can calculate the speed
V from the motion equation (Eq. (7)) and equation (9)

For a given cyclist (m and SC. fixed) riding a bike
with a gear d, on a road of gradient s the speed is a
function of Fmax/d.

(The sinusoidal variation of the force is still consi-
dered.) This latter equation is not very important for
cyclists because the maximum force Fmax is not

correlated to heart frequency which is one of the
fundamental biological parameter in cycling. On
the contrary the applied power, Prw/r¡, is directly
connected to heart frequency and thus very useful.
From equations (2) and (7)

With t he new pa r a meters q - - 2 Prw 03C1SCx and

Fig. 6. - Universal charts for a wheel radius of r = 0.342 m
and a crank-wheel length of 1 = 0.17 m. These charts give
the relations among speed, pedaling frequency, gear, number
of teeth at rear sprocket and crank-wheel, torque applied
to the rear wheel, and maximum force applied on the pedal.

p = pSCx équation (H) 
becomes

from which the (P,, s, V) charts are derived (see
Fig. 7).

Let us remark that :

a) if p = 0 (no fluid friction) and s = 0 (level
road) for Prw = 100 W, the speed will be

How fine it will be to cycle on the moon ! Moreover
gravity on the moon is 1/6 of earth’s gravity.

b) According to section 3.4.1 let us evaluate the

weight influence on speed for a s = 5 % uphill gra-
dient. From equation (12) we have

(rn = 82 kg, V = 10 m/s, SC. = 0.43 m2).
A saving of 200 g gives Ai = 0.01 m/s. The cyclist

will catch up one second every 1 000 s which is very
little.

Fig. 7 (*). - Charts giving the relations among the power
P,, the speed V and the road gradient s. From power and
speed, the rear torque Crw can be computed as well. These
charts are valid only for steady speeds and m = 82 kg,
SC. = 0.43 m2 and C, = 0.008.
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c) Let us now calculate the dx/dSCx value with
the same hypotheses as b)

Going from SC. = 0.43 m2 to SC. = 0.40 m2 will
lead to Ai = 0.15 m/s, 15 times more than b). This
shows the great importance of the SC. factor compared
to the weight factor.

5. Conclusion.

To assess the validity of the model, one should measure
a cyclist’s power during a definite time span. Such
experiments have been carried out individually on
professional racing cyclists of the Renault-Gitane

team, at the Nantes Medical Centre, by Professor
Ginet. The results obtained show that the speed the
cyclists reached individually on the road is slightly
superior to the one computed from the model, using
the power measured in the laboratory. This power
is measured on a bicycle similar to the one actually
used by the team on the road. This superior result
might stem from an inadequate ventilation [1] (as
compared to road conditions) in the laboratory.
Anyway only continued measurements and field
work will make it possible to sharpen this model.

It should be noted that tums have not been consi-
dered here. The only influence of tums would be to
bring in the centrifugal force (in proportion to x2)
w ose e ec is o mcrease t e tota weig t m motion.

For example if the centrifugal force is equal to the
total weight (very sharp turns), the apparent weight
and the rolling losses will be increased by 41 %.
Lightweight and profiling are essential aspects. They
make it possible to reduce the losses due to uphill
gradients and air resistance. If the Belgian champion
E. Merckx had ridden a profiled bicycle when setting
his world distance record, the gain would have been
3 % in speed. It is thus likely he would have broken
the 51 km barrier within one hour. Accordingly,
profiling is more than trifling publicity, but really
the outcome of scientific studies in a wind-tunnel.

Lately the tricycle « Vector » [16] thoroughly stream-
lined, and strictly man-powered has sped beyond
the 26 m/s mark. To achieve this, it was necessary
to decrease the SC. to about 0.1 m2.

Its having three wheels is no obstacle. It has no
influence on rolling resistance because the latter
losses are equal to product C, multiplied by weight.

6. Addenda. Illustration of équations with the aid of
charts.

The linear relation among speed V, gear d and pedal-
ing frequency N is

a) On figure 6, equations (8), (9), (14) are illustrated
for q = 0.97, 1 = 0.17 m and r = 0.342 m. These

equations are valid for steady and variable speed.
b) On figure 7, equations (3) and (12) are illustrated

for SC. = 0.43 m2, C, = 0.008, m = 82 kg, p =
1.205 kg m - 3. Figure 7 is only useable for steady
speed.

Using these charts.

a) Calculating the power of the cyclist. One only
has to measure the pedaling frequency in rpm and the
gradient in %. The gear is known from the number
of teeth in the front and rear sprockets. The velocity
and road gradient make it possible to calculate the
Prw power needed. From this one can obtain Crw
and consequently Fmax. The example illustrated in

figures 6 and 7 is valid for a 7 m gear (52 teeth on the
crank-wheel, 16 teeth on the rear sprocket) and a
47 rpm pedaling frequency. This allows 5.45 m/s
on a level road with a zero wind. The Prw power
comes up to 77 W which gives a Crw torque of 4.84 Nm
and consequently a maximum force Fmax = 150 N
on the pedal.

b) Velocity calculation on hilly roads. Our cyclist
now knows his available power, taking into account
the duration of his ef’ort. He can therefore compute
his corresponding speed for a given road gradient
using the Prw, V, s chart. Khowing his speed he can
quickly find out how much time he will need for a

grades up to 8 %. If the cyclist applies his brakes,
the chart becomes useless as Prw becomes negative.
From his speed, he can pick out his gear. Two options
are open to him : either a low pedaling frequency
with a strong applied force on the pedal or a higher
pedaling frequency leading to a lesser effort. These
two options depend mostly on the cyclist’s training
and constitution. Personal style determines these
two elements.

c) It is possible, but not easy, to illustrate equa-
tion (11) giving the variation of the steady speed V
with respect to C,,, (or Fmax) and the road gradient s.
If s and Cl (or Fmax) are given, V can be calculated by
successive trials on the (PrW’ V, s) and (P,, V, Crw)
charts (Fig. 7) until the results are consistent.
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