A model for stratified gas-liquid turbulent flow in ducts of arbitrary cross-section
J.M. Fitremann, J.M. Rosant

To cite this version:

HAL Id: jpa-00244905
https://hal.archives-ouvertes.fr/jpa-00244905
Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A model for stratified gas-liquid turbulent flow in ducts of arbitrary cross-section

J. M. Fitremann and J. M. Rosant

GIS ENSM-CNRS, 1, rue de la Noé, 44072 Nantes Cedex, France

(Reçu le 19 octobre 1979, révisé le 8 février 1980, accepté le 8 décembre 1980)

Résumé. — Nous proposons une théorie permettant le calcul du gradient de pression et du taux de liquide d’un écoulement diphasique gaz-liquide établi en configuration stratifiée dans une conduite cylindrique de section et d’inclinaison quelconques et son application à une conduite faiblement inclinée sur l’horizontale. La validité est limitée aux valeurs des nombres de Reynolds pour lesquels l’écoulement est turbulent dans les deux phases. L’entraînement de gouttelettes dans la phase gazeuse ou de bulles dans la phase liquide n’est pas pris en compte. La comparaison du calcul et de valeurs expérimentales obtenues avec l’air et l’eau dans des conduites circulaires et rectangulaires est très satisfaisante.

Abstract. — We propose a theory to calculate the pressure gradient and the liquid fraction in two-phase gas-liquid fully developed stratified flow in a cylindrical duct of arbitrary cross-section and slope and its application to near horizontal ducts. Its validity is limited to Reynolds numbers high enough to ensure turbulent flow in both phases. Droplet entrainment or bubble inclusion have not been taken into account. The comparison between calculations and experimental values obtained with air and water in circular and rectangular ducts is very satisfactory.

Nomenclature. — TWO-PHASE VARIABLES.

<table>
<thead>
<tr>
<th>Simplified notation</th>
<th>Exact notation [14]</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_G, \rho_L)</td>
<td>(\bar{\rho}_G, \bar{\rho}_L)</td>
<td>densities statistical average (gas, liquid)</td>
</tr>
<tr>
<td>(v_G, v_L)</td>
<td>(\bar{v}_G, \bar{v}_L)</td>
<td>mass average phase velocities (gas, liquid)</td>
</tr>
<tr>
<td>(\tau_G)</td>
<td>(\bar{\tau}_{Gxy})</td>
<td>statistical average of streamwise component of tangential stress at gas-wall boundary</td>
</tr>
<tr>
<td>(\tau_L)</td>
<td>(\bar{\tau}_{Lxy})</td>
<td>id. at liquid-wall boundary</td>
</tr>
<tr>
<td>(\bar{\tau}i, \bar{\tau}{i2})</td>
<td>statistical average of gas-wall, liquid-wall and gas-liquid perimeters respectively</td>
<td></td>
</tr>
<tr>
<td>(\frac{\partial p}{\partial X})</td>
<td>(\frac{\partial \bar{\rho}_G}{\partial X}) or (\frac{\partial \bar{\rho}_L}{\partial X}) or (\frac{\partial \bar{p}}{\partial X})</td>
<td>statistical average of streamwise component of pressure gradient</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>(\alpha_G)</td>
<td>statistical average of the gas characteristic function</td>
</tr>
</tbody>
</table>

OTHER QUANTITIES.

\(A \)	universal constant for logarithmic velocity profile,
\(B_L, B_1, B_2 \)	second constants for logarithmic velocity profiles, roughness dependent,
\(B'_2 \)	Nikuradse’s constant,
\(C_D, C_1, C_2 \)	universal functions of \(\alpha \) for the friction laws,
\(C_L, C_{G_1}, C_{G_2} \)	logarithmic velocity defect laws constants,
\(D_D, D_1, D_2 \)	integrals of the velocity defect laws,
\(D_H = 4 S/P \)	hydraulic diameter of the cross-section,
friction coefficients, defined in (15), (23) and (28)
g gravity constant,
L, L₁, L₂ length scales for velocity defect laws,
P perimeter of cross-section,
Q₁, Q₂ mass flow rates of the liquid, gas respectively,
Reₗ, Re₉ liquid and gas Reynolds numbers,
S cross-section area,
S₁, S₂ parts of the gas filled cross-section, wall influenced and interface influenced respectively,
S₉ gas cross-section (defined in A.3),
Sₗ = S - S₉ liquid cross-section,
Uₗ, U₉ superficial velocities,
uₙ, u₉ local friction velocities,
υᵣ mean square friction velocities,
vl slip velocity at mean interface,
X, Y, Z cartesian frame, X directed along the flow direction,
x, y, z local boundary coordinates, y normal to the boundary,
α, αₗ = 1 - α gas fraction, liquid fraction,
β angle of duct with horizontal, positive upwards,
ε roughness height of the wavy interface,
µₗ, µ₉ dynamic viscosities,
vₗ, v₉ kinematic viscosities.

1. Introduction. — Stratified turbulent flow of a gas-liquid mixture occurs in many industrial situations and its accurate prediction is of technical and economical importance (1). There is also a current interest in the momentum transfer mechanism at a free surface under various conditions. Finally, of all the two phase flow configurations encountered in practice (Govier and Aziz [1], Bonnin et Fittemann [2]), it has the advantage of being closest to single phase flow and its mathematical description may throw some light on the general transfer concepts in theoretical two-phase dynamics.

Yu and Sparrow [3] have been able to solve numerically the laminar case and a number of authors have attempted the description of the fully turbulent gas-liquid stratified flow (Flanigan [4], Eaton [5], Taitel and Dukler [6], Russel et al. [7], Cheremisinoff and Davis [8], Crouzier [9]). Although some authors have written a correct two-fluid momentum balance equation for the stratified flow case, it appears that heuristic definitions of the various mean values and friction coefficients does not give an accurate prediction of the liquid fraction, especially in upward flow, even if by some adjustments they can be made to predict the pressure gradient satisfyingly. A comparison between several methods and experiments can be found in Crouzier [9].

We have thus attempted to describe reasonably the main features of high Reynolds number co-current stratified flow using two-phase and turbulent flow concepts as described in the following sections.

The central idea developed hereafter is to use two parameter families for the velocity profiles (law of the wall and velocity defect law) in three distinct regions of the cross section, namely the liquid filled area, a wall influenced gas area and an interface influenced gas area. A method is proposed to reduce the somewhat arbitrary separation of the gas flow into two parts. Using this scheme, it will be shown that both pressure gradients and liquid content can be accurately predicted, once the physical parameters have been correctly chosen.

2. Basic concepts. — We assume throughout that steady and fully developed stratified gas-liquid flow occurs in a cylindrical duct of arbitrary cross-section and slope. That the momentum exchange between phases through wave-interaction process can reach an equilibrium is found from experiments. Thus, time mean values of physical quantities are steady and independent of the streamwise coordinate. Single phase turbulent flow is prevalent in most of the liquid and gas regions and wavy flow in the interaction region.

The treatment of the single phase regions will closely follow the methods used for the prediction of high Reynolds number turbulent flow in ducts of arbitrary cross-section (Fortier [10]). The interaction region will be idealized as follows:

— The wavy interface is replaced by a fictitious steady boundary, the position of which is well defined by the gas-liquid interaction properties and will be called the mean interface.
— The gas flow above the mean interface is simulated by a wall turbulent shear flow over an axially moving rough boundary.
— The mean interface is assumed to be a free surface for the liquid turbulent flow. Actually, the liquid flow can be resolved into two components: one, the bulk flow mainly influenced by the wall stress; the other, the drift flow mainly influenced by the interfacial stress. However, for the application we have in mind i.e. co-current flow, the experiments [16] show that the contribution of the excess velocity in the drift current region to the total flow rate is small enough to be neglected (Fig. 1). Thus, the results derived here can not be applied to countercurrent flow without further refinements. Owing to the lack of circular symmetry of the flow in both phases, secondary flow and variation of shear stress along...
the boundaries occur and have to be taken into account.

Wall bounded shear flow properties at high Reynolds number such as described in Hinze [11], Tennekes and Lumley [12] for single phase flow in pipes and channels are however assumed to be relevant, secondary flows being taken into account only through shear stress variation with the transverse coordinates.

Two-phase theorems as derived by Ishii [13], Fitremann [14], Delhaye and Achard [15] are used in their time and cross-section average form. To avoid unnecessary complication of the symbols, only time averaged quantities will be used. The proper definitions of the symbols used are given in detail in the appendix and nomenclature section.

Following the above guidelines, we get some simplification of the phase-interaction process, viz.:

- The exchange of mass through chemical reaction and entrainment of bubbles or droplets is neglected.
- The exchange of momentum between the gas and the liquid is obtained i) through continuity of the normal stress at the mean interface ii) through continuity of the tangential stress at the mean interface. However, strong liquid → gas interaction occurs through the wave mechanism modelled here by a rough gas-liquid boundary, and weaker gas → liquid interaction owing to the neglect of the contribution of the excess velocity in the drift current zone to the total liquid flow rate.

By a standard procedure in fully developed flow [11, 12], it is found that the sum of the hydrostatic pressure and a combination of the normal turbulent stresses is constant in a plane normal to the flow direction and thus the streamwise pressure gradient component is the same for any reference point chosen in the cross section owing to the continuity of the normal stress across the interface (2).

Then, the mean interface is chosen so as to simplify the mass conservation equations, as shown in the appendix, into

\[Q_L = \rho_L U_L S = \langle v_L \rangle_{S_L} (1 - \alpha) \rho_L S \]
\[Q_G = \rho_G U_G S = \langle v_G \rangle_{S_G} \rho_G S \]

where:

- \(\alpha \) is the cross-section averaged gas time-fraction
- \(S_G = \alpha S \) is the gas filled cross-section area (Fig. 1)
- \(S_L = (1 - \alpha) S \) is the liquid filled cross-section area
- \(\langle \cdot \rangle \) denotes averaging over the variety indicated by a subscript. (All symbols are properly defined in the appendix and nomenclature section.)

The streamwise momentum balance equations for each phase reads

\[\frac{\partial p}{\partial X} = \frac{P_L}{S_L} \langle \tau_L \rangle_{P_L} - \frac{P_G}{S_G} \langle \tau_G \rangle_{P_G} + \rho_L g \sin \beta \]
\[\frac{\partial p}{\partial X} = \frac{P_G}{S_G} \langle \tau_G \rangle_{P_G} + \frac{P_L}{S_L} \langle \tau_L \rangle_{P_L} + \rho_G g \sin \beta \]

where \(p \) is the mean pressure at any reference point in the cross-section, \(P_L, P_G, P_i \) are the liquid-wall, gas-wall and gas-liquid interface perimeters respectively and \(\tau_L, \tau_G, \tau_i \) the corresponding shear stress along these boundaries, the signs of which have been chosen so that they are positive in co-current flow with the higher velocity on the gas side when no flow reversal occurs along the duct wall.

By eliminating the pressure gradient between (3) and (4), the balance equation

\[P_L \frac{1}{S_L} \langle \tau_L \rangle_{P_L} - P_G \frac{1}{S_G} \langle \tau_G \rangle_{P_G} + \rho_L \rho_G g \sin \beta = 0 \]

is obtained. Phenomenological relations for \(\tau_L, \tau_G, \tau_i \) and the mean interface profile are necessary to close the system. \(\alpha \) is then readily obtained from equation (5) and the pressure gradient can then be calculated from (3) or (4).

The central idea in our model consists in the distinction of three regions in the cross-section: one is the liquid filled region; the two others are in the gas phase, one where the flow is essentially influenced by the wall, the other where the flow is essentially influenced by the wavy interface (Fig. 1). In each of these regions, the properties of turbulent shear flow at high Reynolds number are assumed to be valid and the solution of the Reynolds equations uniquely determined by the boundary conditions.

(2) The pressure itself is not necessarily continuous since there can be a jump of the normal turbulent stress at the mean interface. However in fully developed flow this jump is axially constant and the equality of the pressure gradient in both phases holds.
3. The liquid phase region. — We assume, as in the
treatment of open channel flow, that the turbulent
properties of the liquid flow are, apart from a small
region near the interface where the drift current
occurs, directly influenced by the solid boundary.
Local measurements of velocity profiles such as shown
in Suzanne [16] indicate that this approximation is
valid when the liquid flow rate is high enough to allow
the contribution of the excess drift current to the
total liquid flow rate to be negligibly small.

We now use, in addition to the main cartesian frame
of reference (X, Y, Z ; X streamwise coordinate), cur-
vilinar wall coordinates (x, y, z) so that y is directed
along the normal to the wall and z is measured along
the wall from some arbitrary origin.

In wall coordinates, the universal velocity profile in
the inner layer is written

\[
\frac{v_l}{u_\sigma(z)} = F_L \left(\frac{y u_\sigma(z)}{v_l} \right)
\]

(6)

where

\[
[u_\sigma(z)]^2 = \frac{\tau_l(z)}{v_l}.
\]

(7)

In the core region, dimensional analysis leads to the
following expression for the velocity defect law :

\[
\frac{v_l - v_{l,\text{max}}}{u_\sigma} = G_L \left(\frac{Y}{L}, \frac{Z}{L} \right)
\]

(8)

where \(u_\sigma \) is a friction velocity scale and \(L \) a length
scale of the mean flow. \(v_{l,\text{max}} \) is the maximum mean
axial velocity of the flow. \(G_L \) is a universal function
for a given liquid cross-section \(S_L \) thus a universal function
of \(\alpha \) (and \(Y, Z \)) for a given pipe cross-section.

For sufficiently high Reynolds number, both laws
are valid in an overlap layer ; (6) and (8) then assume
the necessary form (in wall coordinates) :

law of the wall

\[
\frac{v_l}{u_\sigma} = A \log \frac{y u_\sigma(z)}{v_l} + B_0
\]

(9)

velocity defect law in wall coordinates

\[
\frac{v_l - v_{l,\text{max}}}{u_\sigma} = A \log \frac{y}{L} + C_L \left(\frac{z}{L} \right)
\]

(10)

(10) actually defines the universal function \(C_L \) of \(\alpha \)
and \(z/L \) from \(G_L \). \(1/A \) is the Von Karman constant.
\(B_0 \) depends on the wall roughness as in single phase
pipe flow.

Combining (9) and (10) gives

\[
\frac{v_{l,\text{max}}}{u_\sigma(z)} = A \log \frac{u_\sigma(z) L}{v_l} + B_0 - C_L \left(\frac{z}{L} \right).
\]

(11)

This relation links the variations of \(u_\sigma(z) \) to the
universal function \(G_L \) through its image in the wall
coordinates \(C_L \) for a given liquid fraction and cross-
section.

If we now chose \(u_\sigma \) such as

\[
\langle \tau_L \rangle = \rho_L u_\sigma^2 = \rho_L \langle u_\sigma^2 \rangle
\]

(12)

using the mean value theorem we are assured of the
existence of an abscissae \(z_0 \) on \(P_L \) where \(u_\sigma(z_0) = u_\sigma^0 \).

(10) can be written at this particular point \(z_0 \) and
substracted from (8) to give

\[
\frac{v_l}{u_\sigma} = \frac{v_{l,\text{max}}}{u_\sigma} + G_L = A \log \frac{u_\sigma^0 L}{v_l} +
\]

\[
+ B_0 - C_L \left(\frac{z_0}{L} \right) + G \left(\frac{Y}{L}, \frac{Z}{L} \right),
\]

(13)
equation (13) is merely the velocity defect law where
\(\frac{v_{l,\text{max}}}{u_\sigma} \) has been expressed in terms of mean flow quanti-
ties.

We now use a standard procedure to evaluate the
mean flow rate by integrating the velocity defect law
right to the wall. In single phase flow, this procedure
leads to very small errors in the determination of the
friction coefficient since it neglects only the difference
in velocity between the viscous and buffer layer law
and the logarithmic law [10, 11]. The higher the
Reynolds number, the smaller the error. This technique
is preferred to the integration of the inner law right
to the maximum velocity location which leads to greater
errors (Fig. 2) ; furthermore, all universal coefficients
used so far have been determined by this procedure
and it is likely that they will have comparable values
in our case.

We thus obtain

\[
\langle \tau_L \rangle = \frac{v_l}{1 - \alpha} =
\]

\[
= u_\sigma^0 \left[A \log \frac{u_\sigma^0 L}{v_l} + B_0 - C_0 - D_0 \right]
\]

Fig. 2. — Integration of the velocity defect law. Comparison with
exact profile.
where

\[C_0 = C_L \left(\frac{z_0}{L} \right) \]

and

\[D_0 = - \frac{L^2}{S_L} \int_{S_L} G(Y, Z/L) d\left(\frac{Y}{L} \right) d\left(\frac{Z}{L} \right) \]

are universal functions of \(\alpha \) for a given cross-section. Further taking the length scale \(L \) to be

\[L = \frac{4 S_L}{P_L} \quad (14) \]

This expression is similar to Colebrook's formula but takes into account the variation of the wall stress along the wetted perimeter through the functions \(C_0(\alpha) \) and \(D_0(\alpha) \). The appearance of the ratio \(P/P_L \) is due to the use of the global rather than the effective Reynolds number and the choice of the length scales.

4. The gas phase region

As previously indicated, we split the gas filled area of the cross-section into a region where the turbulent properties are controlled by the wall stress (subscript 1) and another where they are controlled by the interfacial stress (subscript 2). That the layer near the wavy interface can be scaled by the interfacial shear stress only is supported by the experiments of Suzanne [16], Tsacoyannis [17], Gayral [18].

Scaling the wall stress and the interfacial stress independently improves the accuracy of their evaluation, as can be expected from the work of Laufer [19]. Single scaling models, such as [6] and [9] are largely inaccurate, especially in upward flow; this is almost certainly due to the important dissymmetry of the shear stresses at the boundaries which can be taken into account only through proper scaling of the turbulent flow. It is not clear from the above cited results whether the introduction of a slip velocity at the boundary could increase the consistency of the model for this quantity appears to be small compared to the gas mean velocity in all cases examined so far, but it is used for the sake of completeness. There is a known problem for the choice of the origin of the transverse coordinate \(y \) for the boundary layer over a rough interface. This problem is not solved at present and we shall assume that this origin is defined by the best fit of the universal logarithmic velocity profile above the wavy interface with experimental data.

The locus of these origins might not coincide with the mean interface position determined by the mass conservation laws, but to the present accuracy of the formulation it is probably irrelevant to distinguish the two surfaces.

We now use an identical method to that of the preceding section to evaluate the mean stress on the gas phase boundaries. The velocity defect law is shown to be logarithmic, i.e.

\[\frac{v_G - v_{G,max}}{u_{*G}} = G_1 \left(\frac{Y}{L_1}, \frac{Z}{L_1} \right) \quad (18) \]

should be written as

\[\frac{v_G - v_{G,max}}{u_{*G}(z)} = A \log \frac{y}{L_1} + C_1 \left(\frac{z}{L_1} \right) \quad (19) \]

in the wall coordinates as it is matched with the inner law

\[\frac{v_G}{u_{*G}(z)} = A \log \frac{y u_{*G}(z)}{v_G} + B \quad (20) \]

in the overlap region.

We define

\[L_1 = \frac{4 S_1}{P_G} \quad (21) \]

\[u_{*G,o}^2 = \frac{\langle \tau_G \rangle_{P_G}}{\rho_G} = \frac{\langle u_{*G} \rangle_{P_G}}{P_G} \quad (22) \]

\[f_G = \frac{2 \langle \tau_G \rangle_{P_G}}{\rho_G \langle v_G \rangle_{S_G}} \quad (23) \]

\[Re_G = \frac{4 Q_G}{P_{uG}} = \frac{v_G D_H}{v_G} \quad (24) \]
and write (19) and (20) at the point z_l where

$$u_{G}(z_l) = u_{G_{\text{max}}}$$

is eliminated by subtraction. Integrating the velocity defect law right to the wall, as previously explained, gives:

$$\sqrt{\frac{2}{G}} = A \log Re_G \sqrt{\frac{f_G}{2}} + A \log \frac{P}{P_G} + A \log \left(\frac{v_G}{S_G} \right) \cdot \frac{S_1}{S_G} + B_1 - C_1 - D_1 \tag{25}$$

where

$$C_1 = C_G \left(\frac{z_1}{L_1} \right)$$

and

$$D_1 = - \frac{L_2^2}{S_1} \int_{S_1} G_1 \left(\frac{Y}{L_1}, \frac{Z}{L_1} \right) d \left(\frac{Y}{L_1} \right) d \left(\frac{Z}{L_1} \right)$$

are universal functions of α for a given cross-section shape; B_1 is a function of the wall roughness.

For the remainder of the gas-filled cross-section S_2, we follow similar lines apart from the introduction of a slip velocity v_e at the mean interface to account for the motion of the waves. We also define

$$L_2 = \frac{4 S_2}{P_i} \tag{26}$$

and

$$u_{E0}^2 = \left(\frac{\tau_i}{\rho_G} \right)_{P_i} = \left(\frac{u_{E0}^2}{q_i} \right)_{P_i} \tag{27}$$

and

$$f_i = \frac{2 \left(\frac{\tau_i}{\rho_G} \right)_{P_i} \left(v_G - v_{E0} \right)^2}{Q_2} \tag{28}$$

and an abscissae z_2 where

$$u_{E}(z_2) = u_{E0}$$

and

$$v_i(z_2) = v_{E0}.$$

Writing the velocity defect law

$$\frac{v_G - v_{G_{\text{max}}}}{u_{E0}(z)} = G_2 \left(\frac{Y_{L_2}, Z_{L_2}}{L_2} \right) \tag{29}$$

as a logarithmic profile in boundary coordinates

$$\frac{v_G - v_{G_{\text{max}}}}{u_{E0}(z)} = A \log \frac{Y_{L_2}}{L_2} + C_{G_2} \left(\frac{z}{L_2} \right) \tag{30}$$

in the region where it overlaps the inner law

$$\frac{v_G - v_i(z)}{u_{E0}(z)} = A \log \frac{Y_{E0}(z)}{v_G} + B_{G_2} \tag{31}$$

gives, as before, the velocity defect law in terms of mean flow quantities and

$$\sqrt{\frac{2}{G}} = A \log Re_G \sqrt{\frac{f_G}{2}} + A \log \frac{P}{P_G} + A \log \left(\frac{v_G}{S_G} \right) \cdot \frac{S_2}{S_G} + B_2 - C_2 - D_2 \tag{32}$$

B_{G1} depends on the equivalent uniform sand roughness e of the interface at abscissae z and

$$B_2 = B_{G1}(e(z_2)),$$

or

$$B_2 = B_{G1}(e_0).$$

Also

$$C_2 = C_{G1} \left(\frac{z_2}{L_2} \right)$$

and

$$D_2 = - \frac{L_2^2}{S_2^2} \int_{S_2} G_2 \left(\frac{Y_{L_2}, Z_{L_2}}{L_2} \right) d \left(\frac{Y_{L_2}}{L_2} \right) d \left(\frac{Z_{L_2}}{L_2} \right).$$

C_2 and D_2 should be universal functions of α for a given cross-section profile, B_2 is a function of the properties of the fluids and flow parameters since it reflects the transfer of momentum from the gas to the liquid via the wave (or ripple) process.

5. The closure relationships. — 5.1 The choice of S_1/S_2. — Only a correct choice of the boundary between S_1 and S_2 can assure the universality of the functions $C_1(\alpha), D_1(\alpha), C_2(\alpha), D_2(\alpha)$. Ideally, a surface of minimum stress could be chosen, but in most cases this would entrain the solving of the whole turbulent flow problem. However, we feel that a reasonable choice of the ratio S_1/S_2 can be made on semitheoretical grounds.

Experiments in rectangular channels of high aspect ratio (Laufer [19]) or in other type of flow where plane symmetry is likely to be prevalent (Suzanne [16]) show that the shear stress varies linearly with the cross-stream coordinate and is very nearly zero at the point of maximum velocity. In this case, the obvious choice for the area ratio is, neglecting the small distance between zero stress and velocity maximum locations

$$S_1 = \left(\frac{u_{E0}}{u_{E00}} \right)^2.$$

On the other hand, in the case of a motionless interface $f_i \approx f_G$ holds provided that $\left(\frac{\tau_i}{\rho_G} \right)_{P_i} \approx \left(\frac{\tau_i}{\rho_G} \right)_{P_i}$, and $D_i \approx D_2$, as expected in the limit of very high Reynolds number (Fortier [10], Coles [20]). The identity of (25) and (32) then implies $S_1/S_2 = P_i/P_G$.

REVUE DE PHYSIQUE APPLIQUÉE
The above remarks suggest the following interpolation formula for the area ratio in the general case
\[
\frac{S_1}{S_2} = \frac{P_G}{P_L} \left(\frac{\Delta \rho G}{\Delta \rho L} \right)^2
\] (33)
which should give the correct answer in the two limit cases cited above.

It should be reminded that the main purpose of the above semi-empirical relation (33) is to evaluate the flow integral over the cross sectional area of the gas and that a slight error in the prediction of the locus of the maximum gas velocity is acceptable. Thus it is somewhat illusory to use a more precise turbulence model at present though this particular closure relationship can be improved in the future.

5.2 The uniqueness of \(v_{G\text{max}} \). — Both core regions in \(S_1 \) and \(S_2 \) have to be matched. This is achieved by using the same value of \(v_{G\text{max}} \) in both regions (and correct values of \(D_1 \) and \(D_2 \)).

5.3 The mean interface profile. — In principle, the mean interface profile should be an outcome of the theory. It can be found by solving a transverse momentum balance equation taking into account the secondary flow in the gas phase. Some attempts have been made in this field especially for the prediction of horizontal annular flow (Butterworth [21]), but the full analysis of the mechanisms involved has yet to be achieved. In view of the comparison of our theory with laboratory experiments, the mean interface profile can be given a priori; the values of \(P_G, P_{L}, P_i \) are then prescribed algebraic functions of \(\alpha \). This procedure is correct for small upward angles \(\beta \leq 10^\circ \) and low density ratio as in air-water flow at standard pressure.

5.4 The universal functions. — All the quantities \(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z \) should be prescribed. \(A \) is a universal constant. \(B_0 \) and \(B_1 \) are function of Reynolds numbers based on roughness height and friction velocities and can be estimated from single phase flow pressure drop measurements in the same channel. \(C_0, D_0, C_1, D_1, C_2, D_2 \) are universal functions of \(\alpha \) for a given cross-section and could be obtained by anemometry and local shear stress measurements. As no such data is available at present, we shall deduce their value from single phase flow analogy. Suzanne [16]'s results have been found insufficient to evaluate the mentioned constants.

5.5 The interface characteristic functions. — \(B_2 \) is a function of a Reynolds number based on the roughness height of the interface and mean friction velocity
\[
B_2 = - A \log \frac{v_0 u_{G\text{max}}}{v_G} + B_2^* \quad (34)
\]
Assuming all other (universal) constants are known, \(v_0 \) is the only physical characteristic of the model. In principle, it depends upon geometrical and flow properties, including \(\alpha \), and the physical properties of both fluids and the interface. However, though several authors (Charnock [22], Hidy and Plate [23], Wu [24], Phillips [25], Theofanous [26], Lilleleht [27], Larson and Wright [28], Suzanne [16], Moeck and Stachiewicz [29]) have proposed expressions for \(v_0 \), they are far from falling into agreement. At this stage of analysis, it is then better to take \(v_0 \) as a free parameter to be evaluated from experiments, with the exception of one set of data giving both the values of \(v_0 \) and pressure gradient so that direct comparison can be made [16]. It will be shown in the next section that direct comparison of the model with experimental data gives reasonable values of \(v_0 \). \(v_{G\text{max}} \) is the absolute velocity of the waves ensuring most of the momentum transfer between phases. In the laboratory experiments so far examined, these waves have a short wave-length and propagate at low velocity compared to the gas mean flow velocity. A constant small velocity ratio \(\frac{v_{G\text{max}}}{v_{G\text{max}}} \) has been used in the test procedure as in Moeck and Stachiewicz [29].

6. Comparison with experiments and discussion. — The above described model has been tested by comparison with two sets of data. One is given by Suzanne [16] and was obtained in a rectangular channel of cross-section \(0.1 \times 0.2 \text{ m}^2 \) with a downward slope of 0.08\%. The other is given by Crouzier [9] for a circular duct of I.D. 0.045 m and upward slopes of 0\%, 2\% and 5\%. Both authors used air and water at atmospheric pressure. The first author measured velocity profiles in both phases and deduced the equivalent sand-roughness of the interface from gas anemometry. Both authors give pressure drop and liquid fraction in the well developed flow sections of the channels.

In both experiments, the mean interface was almost plane and this assumption was introduced in our calculations. There is still some controversy on the values of the universal logarithmic profiles constants \(A \) and \(B \). Though the constant \(A \) seems to increase with Reynolds number (Tennekes and Lumley [12]), we have taken \(A = 2.46 \) as pertinent to the Reynolds number range used in [6] and [9]. Also, most of the evaluations of the second constant are made using this value and it should be kept for the sake of coherency. Owing to the lack of measured values of the \(C_i \) and \(D_i \), \(i = 0, 1, 2 \) functions in stratified flow, we have been guided by single phase values in our choice for the comparison test.

Fortier [10] gives \(D = 4.44 \) for a circular duct, a value very close to that of Laufer [30] : 4.46. With our chosen value of the constant \(A \), this implies \(C = 0.96 \). Comparison with the Von Karman-Nikuradze formula gives \(B = 5.69 \) in good agreement with experimental data.

In the limit case of small liquid holdup, two dimen-
Table I.

Values of the universal functions deduced from single phase flow analogy

<table>
<thead>
<tr>
<th>Function</th>
<th>A</th>
<th>B</th>
<th>$C_0 + D_0$</th>
<th>C_1</th>
<th>D_1</th>
<th>C_2</th>
<th>D_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular duct</td>
<td>2.46</td>
<td>5.69</td>
<td>5.40 + 0.16(2 $\alpha - \alpha^2$)</td>
<td>0.96</td>
<td>4.44</td>
<td>0.96</td>
<td>4.44</td>
</tr>
<tr>
<td>Two-dimensional flows</td>
<td>2.46</td>
<td>5.15</td>
<td>5.87</td>
<td>2.72</td>
<td>3.15</td>
<td>2.72</td>
<td>3.15</td>
</tr>
</tbody>
</table>

Dimensional analysis of the liquid layer is possible and gives (assuming a constant value of the shear stress)

$$C_0 + D_0 = A(\log \frac{3}{2} + \frac{3}{2}) + O(\alpha^2) = 5.56.$$

The value is 5.4 for $\alpha = 0$.

We have thus used the simple following interpolation formula for arbitrary α:

$$C_0 + D_0 = 5.40 + 0.16(2 \alpha - \alpha^2).$$

In two-dimensional flow, there is some discrepancy between the values of D given by Fortier [10] : 2.34 and Laufer [19] : 3.15. Following the same lines as above, we have chosen the values shown in table I.

ε_0/D_H has been used as a free parameter for comparison purposes except for the data of Suzanne [16] where measured values of ε_0 were available.

$\nu_0/n_{G\text{max}}$ was kept constant and equal to 0.07.

Figures 3 and 4 show that most of the data of Suzanne is well predicted by taking a value of ε_0/D_H of 0.05. This implies (Cohen and Hanratty [31]) a wave height of the order of 0.0015 m in agreement with the observations.

Using now the values of ε_0/D_H deduced from the velocity profile measurements, very good agreement is obtained between theory and experiment (Figs. 5 and 6).

Fig. 3. — Experimental liquid fraction from Suzanne [16] compared with theory ($\varepsilon_0/D_H = 0.05$).

Fig. 4. — Experimental pressure gradient from Suzanne [16] compared with theory ($\varepsilon_0/D_H = 0.05$).

Fig. 5. — Experimental liquid fraction from Suzanne [16] compared with theory (ε_0/D_H evaluated from velocity profiles).
and 6). No values of ε_0/D_H were available in the case of Crouzier [9]. Figures 7 to 10 show the measured liquid fraction and pressure gradient for a set of gas and liquid flow rates for three slopes (0%, 2% and 5% upward) and the theoretical calculations for $\varepsilon_0/D_H = 0, 0.05$ and 0.20. It is seen that a single value of ε_0/D_H allows good prediction of both quantities.

This is felt to be a considerable improvement upon previous models. Also, it does not vary with slope for identical internal conditions, as expected from basic considerations.

The values of ε_0/D_H that fit the data are relatively independent of the gas rate for a given liquid rate. This is not paradoxical since the liquid fraction...
diminishes as the gas rate is increased so that one effect compensates the other. The results are thus coherent with the usually observed increase of the gas-liquid friction with gas velocity and liquid fraction (Moeck and Stachiewicz [29], Crouzier [9], Wallis [32]).

To predict pressure drop and liquid content in any pertinent situation, one requires an interfacial roughness estimate. The present number and extent of experiments is too small to give any precise law valid over most of the current physical parameters range. However, in situations where the momentum transfer is similar to that of the already cited experiments, a modified Charnock law [22]

\[\varepsilon_0 = k a_L \frac{u_{t L}^2}{g} \]

seems to give satisfying results. This is shown in figures 11a and 11b for near horizontal flow with the value \(k = 1 \) taken as a tentative closure assumption.

The validity of (35) is probably fortuitous and it should be used with caution until more experimental evidence can be gained.

7. Conclusion. — The model presented for the calculation of pressure drop and liquid fraction in fully developed stratified turbulent gas-liquid flow is based on the properties of high Reynolds number wall bounded turbulent flow. Its mathematical expression depends on the geometry of the cross-section only through six functions of the liquid fraction. Although they are yet to be measured, approximate values have been estimated by analogy with single phase flows for the sake of comparison of the theory with experimental data. The remaining input is the roughness height of the wavy interface with respect to the gas flow. It can be adjusted to give good prediction of both the liquid fraction and the pressure gradient for the test cases considered in this article and its value is found to be in close agreement with other authors evaluation independently of the slope or the geometry of the cross-section.

Although the first results are encouraging, the authors feel that comparison with other data obtained in widely different experimental conditions, especially with various effluents and absolute pressure values is needed though they are scarce at present.
Furthermore, accurate anemometry in both phases in laboratory set ups could be used to measure the remaining unknown functions, thus enabling the precise evaluation of the wavy interface roughness parameters. Such a work is highly recommended.

Simpler models can be used, for instance with single scaling in the gas phase and fewer friction laws constants. However, the gain could be only apparent since these constants would have lost universality and depend on all flow and physical parameters for which correlations should be provided by time consuming experimental work.

Acknowledgments. — This work has been undertaken under a grant CNRS-ATP 4143. Anterior material on which part of this work is based has been sponsored by SNEA(P), CFP and IFP.

Appendix. — The time averaged form of the phase mass and X-wise momentum conservation theorems are used throughout the text using the simplified notation described below. It is also understood that the mass averaged velocity is used instead of the time averaged one, so that density fluctuations are automatically included in the definitions [13, 33].

The mass conservation theorem [14] reads

$$Q_G = \int \alpha G \rho G \bar{v}_G \, dS = \int \alpha G \rho \bar{v}_G \, dS \quad (A.1)$$

or

$$Q_G = \int \alpha G \rho \bar{v}_G \, dS$$

in simplified notation.

It can be assumed that the mean gas density vary very little over the entire cross-section and, thus we write

$$\frac{Q_G}{\rho G S} = \langle \alpha G \bar{v}_G \rangle_S = U_G. \quad (A.2)$$

We now chose a surface S_G (defining the mean interface) so that

$$\int \alpha G \bar{v}_G \, dS = \int v_G \, dS \quad \text{and put} \quad \alpha = \frac{S_G}{S}. \quad (A.3)$$

Then (A.2) can be written

$$U_G = \alpha \langle v_G \rangle_{S_G} \quad \text{(exact equation).} \quad (A.4)$$

From mean value theorems, we have

$$\frac{\langle \alpha G \rangle}{\alpha} = \frac{\langle v_G \rangle_{S_G}}{\langle v_G \rangle_1} \quad (A.5)$$

where

$$\langle v_G \rangle_1 = \frac{\int S \alpha G v_G \, dS}{\int S \alpha G \, dS}$$

is a weighted mean value of the velocity.

The ratio (A.5) tends to unity when the wavy zone reduces to zero thickness or when v_g tends to zero in the wavy zone. We can expect that in most application the definition (A.3) of S_G leads to small errors in the determination of $\langle \alpha G \rangle$. Thus we have confounded in the text α and $\langle \alpha G \rangle$ and the mean values of wetted perimeters with their definition from S_G.

References