Trap characterization in S. O. S. - M. O. S. transistors using noise measurements
A. Touboul, G. Pelloux, G. Lecoy, A.A. Choujaa, P. Gentil

To cite this version:

HAL Id: jpa-00244445
https://hal.archives-ouvertes.fr/jpa-00244445
Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
TRAP CHARACTERIZATION IN S. O. S. - M. O. S. TRANSISTORS USING
NOISE MEASUREMENTS (*)

A. TOUBOUL, G. PELLOUX, G. LECOY
Centre d'Etudes d'Electronique des Solides, associé au C. N. R. S.,
Université des Sciences et Techniques du Languedoc, 34060 Montpellier Cedex, France

A. A. CHOJAA
LETI/MEA, CENG 85 X, 38041 Grenoble Cedex, France

and

P. GENTIL
Laboratoire d'Electronique,
Equipe Physique des Composants Electroniques
associée au C. N. R. S., ENSERG, 38031 Grenoble Cedex, France

(Reçu le 10 novembre 1977, révisé le 16 janvier 1978, accepté le 18 janvier 1978)

Abstract. — The noise of n- and p-channel S. O. S.-M. O. S. transistors has been measured at
room temperature in the range of 1 kHz-1 MHz. Its behaviour has been related to the doping of the
silicon film and to the effect of the bulk silicon layer bias. n-channel devices and p-channel ones,
with a high enough doping concentration, exhibit 1/f noise which tends to the theoretical thermal
level at higher frequencies. This noise is thought to be due to the Si-SiO2 interface levels. p-channel
deVICES with a fully depleted silicon film present bumps in the noise spectra which are superposed
on a 1/f background. They are associated with three different levels in the depletion zone and also
near the lower interface. Making simple assumptions in the theory of G. R. noise in M. O. S.
transistors, a density of traps of about 10^{11} cm^{-2} for each level has been found. These noise measurements have been made in connection with threshold voltage measurement, the variation of
which confirms the complete depletion of the silicon film.

1. Introduction. — The purpose of this work is the investigation of the influence of the silicon-sapphire
interface on the behaviour of the noise of Silicon-On-
Sapphire M. O. S. transistors.
The experimental results (which include threshold

(*) Work supported by A. T. P./C. N. R. S. (n° D-2939).
The same mask has been used for the three kinds of transistors. Both n- and p-inversion-channel transistors have been studied. The dimensions of these devices are given on figure 1. The transistors have been labelled in the following mode:

i) p-channel with
\(N_D = 2 \times 10^{15} \text{ cm}^{-3} \) → transistor \(S_1 \);

ii) p-channel with
\(N_D = 1 \times 2 \times 10^{16} \text{ cm}^{-3} \) → transistor \(S_2 \);

iii) n-channel with
\(N_A = 5 \times 10^{15} \) to \(10^{16} \text{ cm}^{-3} \) → transistor \(S_3 \).

The substrates of the transistors \(S_1 \) and \(S_2 \) were provided by Union Carbide and those of the \(S_3 \) transistors by Inselek.

An electric contact on the silicon layer is represented by the letter B on figure 1. This electrode enables one to control the bias of the silicon bulk, this bias is always referred to the source. Furthermore, when this electrode is not used, it is kept grounded to avoid the kink effect on the drain current.

The chosen values for \(I_D, V_{DS} \) and \(V_{GS} \) keep the transistor in the ohmic regime of the \(I_D - V_{DS} \) characteristics: the main advantages of these biasing conditions are a uniform inversion layer and a low channel impedance to make easier measurements of the channel noise current.

3. Drain characteristics. — The bulk of the epitaxial silicon layer has been reverse biased with respect to the source. The effect of this bulk-source bias \(V_{BS} \) has been studied on bulk silicon M. O. S. transistors: its influence is such that the drain current \(I_D \) diminishes when increasing \(V_{BS} \) (\(V_{GS} \) being kept constant).

For the three devices, the variation of the threshold voltage has been measured. \(S_2 \) and \(S_3 \) present a uniform variation of \(V_T \) with \(V_{BS} \), whereas \(V_T \) in the case of \(S_1 \) is made more negative, and saturates. These results are plotted on figure 2 for \(S_1 \) and \(S_2 \).

This different behaviour can be correlated with the magnitude of the doping concentrations of \(S_1 \) and \(S_2 \).

4. Results on the channel noise. — The experimental set-up used in the range of frequencies (1 kHz-1 MHz) is described in figure 3: a white noise generator is used as a noise standard; the channel noise current \(i_n(t) \) is amplified and filtered by a wave analyzer which performs its spectral analysis.

At the output of the transistor, the noise associated with the drain current was measured. These measurements lead to the spectral intensity of the channel noise current \(i_n(t) \). The equivalent noise circuit is represented on figure 3. There, the transistor is reduced to its channel impedance \(R_n = \partial I_D / \partial V_{DS} \) in parallel with the drain load resistor \(R_L \).

All noise measurements were made at room tempe-
FIG. 3. — Block diagram of the noise measuring equipment and equivalent noise circuit of the transistor.

FIG. 4. — Noise spectra of transistor S_3 plotted in figure 4. They exhibit a uniform 1/f law and tend to the theoretical level of the thermal noise which can be easily calculated in the ohmic regime of the drain characteristics by putting

$$S(f) = \gamma 4 kT \frac{\partial I_n}{\partial V_{DS}}, \quad [3], \ [4]$$

with $\gamma \approx 1$ as the device is biased with $V_{DS} \to 0$. The calculation results in $S(f) = 1.33 \times 10^{-24} \text{A}^2/\text{Hz}$. There is a good agreement between the experimental values at high frequencies and the calculated level.

The 1/f portion of the noise spectrum is due to surface noise caused by the interactions between the channel carriers and the Si-SiO$_2$ interface levels. This noise has been extensively studied on bulk M. O. S. transistors and is very well known.

No influence of the bulk-source bias V_{BS} was noticed on the $S(f)$ level.

The variation of $S(f)$ versus V_{BS} at frequencies of 800 Hz and 20 kHz is plotted on figure 5; it confirms the results of the noise spectra when varying V_{BS}.

Hsu reported elsewhere [5], [6] the presence of G-R mechanisms in n-channel S. O. S.-M. O. S. transistors. We did not verify these results. This is due to the different types and technologies of the tested devices. Indeed the S. O. S.-M. O. S. studied by Hsu present a silicon film completely depleted at $V_{BS} = 0 \text{ V}$.

b) The noise spectra of S_3 and S_3 are similar. They display a uniform 1/f law and no influence of V_{BS}, as is shown on figure 6. This can be correlated with the variation of V_T versus V_{BS} (see figure 2). The doping of the silicon film of S_3 is so high that values of V_{BS} of up to 4 V have little effect on V_T and do not deplete completely the silicon; so a neutral silicon layer screens the effect of levels near the lower interface.

c) $S_1(f)$ has been plotted versus frequency for S_1 (Fig. 7). When keeping $V_{BS} = 0$, the noise follows a 1/f law (curve A) and tends to reach the theoretical thermal level ($1.2 \times 10^{-24} \text{A}^2/\text{Hz}$). The behaviour of this noise can be compared to the one of S_2 and S_3, where the silicon-dioxide interface mainly contributes to the noise. When increasing V_{BS} to 3.5 V a 1/f2 slope and bumps appear in the noise spectrum (curve B). This curve has been computed by adding elementary G-R noise components which are defined by a noise spec-
can approximate the density \(N_T \) of the traps per unit of surface involved in each elementary G-R process, by assuming a uniform spatial distribution through the silicon film in the depletion region. The position of the G-R levels has been determined with a precision of about 20%.

From the determination of the device transconductance \((g_m) \), the gate geometry \((Z, L)\), the thin oxide capacitance \((C_0) \) and the fractional occupancy of traps \((f_t)\) [the product \(f_t(1 - f_t) \) is approximated to 0.25], one can obtain [7], [8]:

\[
S_i(f) = \frac{4 \pi^2 g_m^2}{C_0^2 ZL} \tau \left(1 + \omega^2 \tau^2 \right)^{-1},
\]

The values obtained for each level are:

\[
N_{T_1} = 9.8 \times 10^{10} \text{ cm}^{-2},
N_{T_2} = 1.1 \times 10^{11} \text{ cm}^{-2},
N_{T_3} = 1.27 \times 10^{11} \text{ cm}^{-2}.
\]

These levels are related to the large density of defects in the silicon film near the silicon-sapphire interface. The orders of magnitude found are similar to those reported in the literature [6], [9].

As the value of \(V_{BS} \) has been chosen such that \(V_T \) saturates (Fig. 2), the silicon film is completely depleted and the depletion layer traps, including the crystal defects near the Si-Al2O3 interface, become active. The depleted silicon layer couples electrically the active channel and those levels.

This assumption agrees with the fact that the transistor \(S_2 \) shows only a \(1/f \) noise. For fixed frequencies (800 Hz, 4 kHz, 40 kHz) we have plotted \(S_i(f) \) versus \(V_{BS} \) for the transistor \(S_1 \). Around \(V_{BS} = 2 \text{ V} \), an increase is observed in the noise (see figure 8); this
happens when the depletion layer reaches the lower interface and when traps become active. The behaviour of this noise is quite similar to that of V_T vs. V_{BB} as can be seen on figure 2.

5. Conclusion. — We have shown that noise measurements together with first order measurements (V_T) are a powerful means of characterization of S. O. S. devices. The influence of V_{BB} has been pointed out: the depletion layer caused by this bias is such that trapping levels in this zone may become active, and considerable noise levels are due to trapping. This effect on the noise is thought to be related with the variation of the carrier mobility near the interface, and with the origin of the leakage currents arising from states near the silicon-sapphire interface [10], [11]. Noise measurements versus the device temperature will be made: they will bring more informations about the location of the energy levels in the silicon gap and their capture cross sections.

References