Variable circular beam apertures
R. Glas, J. Hilcker, H. Münzer, H. Schnitter, S.J. Skorka

To cite this version:

HAL Id: jpa-00244372
https://hal.archives-ouvertes.fr/jpa-00244372
Submitted on 1 Jan 1977

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Two types of variable and nearly circular apertures matched to the circular beam shape of the converted MP-Tandem were developed. The first type (Fig. 1) is called four sector aperture although it actually consists of eight sectors which are arranged in four planes allowing complete closure of the aperture.

The use in ultrahigh vacuum requires special care with regard to outgassing rates and friction. Materials used are stainless steel, titanium, aluminium and polyimide. Ball bearings are lubricated with MoS₂. A prototype was cycled 80 000 times at 5 × 10⁻⁹ torr and temperatures up to 250 °C without showing any wear. Without motor the assembly may be baked at 400 °C. The maximum permissible power is estimated to be 10 W. This restricts the use of this type of aperture to the low energy region of the accelerator.

Four of these apertures have been installed between injector and low energy tube entrance. Three of them — located after lens 1 [1], at the buncher waist and before lens 2 — are used to define precisely the emittance of the injected beam [2]. The apertures furthermore greatly facilitate and accelerate the handling of the beam, they are also used to vary beam intensities without touching the ion source controls. The current signals can be used to automatize the setting of corresponding steerers. No defects have occurred in half a year of routine operation.

The second type, designed to withstand high power loads, is an iris aperture (Fig. 2), similar to the shutter in a photographic camera. Eight segments move between fixed axles and a rotatable cage. The segments are made from titanium, which retains its shape even at very high local temperatures. The cage rotates on ceramic balls to provide electrical insulation. Other materials used are stainless steel and polyimide.

The cage is moved by two radially magnetized permanent magnets, whose fields interact through the
vacuum housing with the outer drive coil. The resulting angular momentum is proportional to the current through the coil and is counteracted by four springs. The diameter of the aperture therefore is also proportional to the current.

Figure 3 shows the control system for the iris aperture. To set the wanted diameter, a corresponding FM-signal is transmitted via light guide and is converted to a proportional current. To guarantee undisturbed beam transmission in case of spark induced failures of the electronics, the last capacitively coupled stage operates on a.c. In case of any failures the coil therefore is always on zero current and the aperture is kept wide open by the springs. The aperture insert is insulated from the housing, the total beam current can be read out and transmitted to ground potential by
Two iris apertures were built and cycled 130 000 resp. 180 000 times in the 10^{-9} torr range at temperatures up to 215 °C without showing any wear. Without coils the apertures were baked at 300 °C. They have been installed in the terminal in front of the lens and the entrance of the high energy tube respectively. They define beam position and diameter. For very heavy ion beams both apertures help to suppress unwanted charge state components and prevent them from hitting the accelerator tube electrodes [1]. Used in the Faraday cup mode they are of great help in maximizing beam transmissions up to the terminal. No defects have occurred until now.

References