Performance of 12UD pelletron tandem accelerator
J. Sanada, S. Seki, T. Ishihara, Y. Nagashima, T. Mikumo, M. Yamanouchi,
K. Katori, K. Kuriyama, K. Furuno, T. Aoki

▶ To cite this version:

HAL Id: jpa-00244320
https://hal.archives-ouvertes.fr/jpa-00244320
Submitted on 1 Jan 1977

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PERFORMANCE OF 12UD PELLETRON TANDEM ACCELERATOR

J. SANADA, S. SEKI, T. ISHIHARA, and Y. NAGASHIMA
Tandem Accelerator Center, University of Tsukuba, Japan

T. MIKUMO, M. YAMANOUCHI, K. KATORI, K. KURIYAMA,
K. FURUNO, and T. AOKI
Institute of Physics, University of Tsukuba, Japan

Résumé. — Les performances de l'accélérateur 12UD de l'université Tsukuba sont décrites.

Abstract. The performance of the 12UD accelerator in Tsukuba are described.

The 12UD accelerator is now in use for researches in nuclear physics, atomic physics, biology, and medical science.

Regular machine time started on November 10, 1976. Total hours for chain running and beam running up to February 8, 1977 are 1,700 and 560 h, respectively. In this period the accelerator ran at terminal voltages between 3.5 and 11.5 MV and behaved excellently without tank opening.

Ion species for routine use are: p (1 μA), d (1 μA), 4He (0.1 μA), 16O6+ (0.1 μA), and 35Cl8+ (0.1 μA).

For helium negative ion production, the Cs-cell of the Lambshift polarized ion source was utilized as an electron adder.

Sulfur acceleration was tried. The current (analyzed charge current of 0.02 μA for S (8+)) was limited by deterioration of vacuum in the low energy tube. An additional pumping and trapping station will be necessary for using chemically active source gases.

Performance of NEC's electron trap was tested for chlorine run. The trap seemed inefficient to remove electrons stripped from heavy ions. Rather, when the trap was turned on, X-ray yield from the terminal area increased slightly. Increase by 40% of the magnetic field in the trap is scheduled.

Table I shows an example of data for routine operation.

<table>
<thead>
<tr>
<th>Table I</th>
<th>35Cl8+</th>
<th>16O6+</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preaccel. volt. (kV)</td>
<td>120</td>
<td>126</td>
<td>130</td>
</tr>
<tr>
<td>Terminal volt. (MV)</td>
<td>11.35</td>
<td>10.45</td>
<td>7.24</td>
</tr>
<tr>
<td>Stripper* lifetime (h)</td>
<td>2</td>
<td>6</td>
<td>very long</td>
</tr>
<tr>
<td>Vacuum**: Low energy tube</td>
<td>4.0</td>
<td>3.8</td>
<td>3.0</td>
</tr>
<tr>
<td>High energy tube</td>
<td>2.0</td>
<td>1.0</td>
<td>2.2</td>
</tr>
<tr>
<td>(x10⁻⁸ torr)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charging current (μA)</td>
<td>114</td>
<td>90</td>
<td>107</td>
</tr>
<tr>
<td>Lost current (μA)</td>
<td>20</td>
<td>7</td>
<td>1.5</td>
</tr>
<tr>
<td>Accel. transmission (%)</td>
<td>26</td>
<td>63</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>***</td>
<td></td>
<td>****</td>
</tr>
<tr>
<td>Analyzed ion current (μA)</td>
<td>0.11</td>
<td>0.7</td>
<td>1.3</td>
</tr>
</tbody>
</table>

(*) Carbon foil, 10 μg/cm².
(**) Vac. without beam : LE, 2; HE, 5 (x10⁻⁹ torr).
(*** Chrage current.
(****) Current for ΔEp 2 8 keV.