Indirect NMR detection of 235U in gaseous uranium hexafluoride
I. Ursu, D.E. Demco, M. Bogdan, P. Fitori, A. Darabont

To cite this version:

HAL Id: jpa-00232549
https://hal.archives-ouvertes.fr/jpa-00232549
Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Indirect NMR detection of ^{235}U in gaseous uranium hexafluoride

I. Ursu
National Center for Physics, P.O. Box MG-6, Bucharest, Romania

D. E. Demco
Polytechnical Institute, 3400 Cluj-Napoca, Romania

M. Bogdan, P. Fitori and A. Darabont
Institute for Isotopic and Molecular Technology, P.O. Box 700, 3400 Cluj-Napoca, Romania

(Reçu le 24 janvier 1985, accepté le 15 avril 1985)

Abstract. — The possibility to use nuclear magnetic resonance in indirect detection of the ^{235}U nucleus in gaseous UF$_6$ is discussed. The ^{19}F absorption spectra linewidths in gaseous UF$_6$ was investigated as a function of ^{235}U enrichment, revealing a dependence on the isotope concentration. The ^{19}F-^{235}U indirect scalar coupling modulated by ^{235}U quadrupole relaxation is the relaxation mechanism responsible for this enrichment effect.

Recent measurements [1-7] showed that the nuclear magnetic resonance may provide a method to determine the presence of ^{235}U in liquid uranium hexafluoride.

The first proposed indirect method [2-4] consists in measuring the transverse relaxation time of ^{19}F, which is dominated by ^{19}F-^{235}U indirect scalar interaction modulated by ^{235}U quadrupole relaxation, and therefore depends on the ^{235}U isotope enrichment. The ^{235}U isotope has a relatively high value of electric quadrupole moment (6.4 barns) [8], and consequently small dynamic distortions of the UF$_6$ octahedral symmetry represent an efficient relaxation mechanism.

The ^{235}U nuclear magnetic resonance signal has a poor signal-to-noise ratio as a consequence of a small magnetogyric ratio and short spin-lattice relaxation time. Despite this, a direct observation of ^{235}U NMR signal in liquid UF$_6$ at $B = 11.747$ T has been recently reported [7].

The aim of this Letter is to investigate the effect of the ^{235}U enrichment on the ^{19}F NMR spectra in gaseous UF$_6$. Using this indirect method, it is not possible to detect the Larmor resonance frequency of the ^{235}U isotope and consequently no pseudo-enrichment effect related to the presence of impurities could be detected. Based on physical properties of uranium hexafluoride molecule in the gas phase it is possible to predict [9] the existence of a dependence for
19F NMR parameters on the 235U concentration. It is possible to elaborate a priori two distinct models for such an enrichment effect. These are based on the following considerations.

(i) In the gas phase as in liquid phase of UF$_6$, a 19F-235U indirect scalar coupling mediated by molecular electrons is present.

(ii) The indirect scalar interaction could be thermally modulated by rapid 235U quadrupole relaxation. Since this isotope has a relatively high value of the electric quadrupole moment, the small dynamic distortions induced by molecular collisions of regular octahedron UF$_6$ molecule in the gas phase, should be an efficient relaxation mechanism.

(iii) Our recent results [10] show that in the UF$_6$ gas with 235U in natural abundance, for relatively small density values, the prevailing relaxation mechanism is represented by the spin-rotation interaction modulated by molecular collisions.

The dependence of the relaxation rates on gas temperature T and density ρ, acquires the form,

\[\frac{1}{T_1} = \frac{1}{T_2} = A \frac{T^{1.5}}{\rho} \]

where A is a constant which depends on the physical parameters of the molecule.

The first model for the enrichment effect in gaseous UF$_6$ is based on the multiplet resolved structure which is expected a priori to exist for gaseous UF$_6$ spherical molecule. The 235U isotope has a magnetic moment ($S = \frac{7}{2}$) which means that the 19F-235U scalar coupling will generate a multiplet structure in the 19F NMR absorption spectra described by frequencies of,

\[\nu = \nu_0 + J M_s \]

where ν_0 is the Larmor frequency of 19F nucleus, M_s is the magnetic quantum number, and J is the 19F-235U scalar coupling constant. Since the J coupling constant for liquid MoF$_6$ and WF$_6$ is 47 Hz and 44 Hz respectively [11] and is expected not to be essentially different for the liquid and vapour phase, it is estimated that for gaseous UF$_6$, the distance between the extreme satellite lines will be of the order of 300 Hz. The multiplet resolved structure could be concealed by the mechanism of line broadening related to the spin-rotation relaxation. The efficiency of this mechanism is diminished by increasing the density of the gas (see Eq. (1)).

The second possible model which predicts an enrichment effect is related to the collapsing of the multiplet structure due to rapid fluctuation of 235U magnetic moment, a consequence of the short quadrupolar spin-lattice relaxation of 235U. If the fluctuation frequency is of the order of indirect scalar coupling constant J, one expects the collapse of the multiplet structure and the emerging spectrum will be a single broad line.

In order to test which of the above models is valid, NMR measurements were made at 84.754 MHz on UF$_6$ saturated vapours in equilibrium with the liquid phase. The Fourier transform NMR spectra of 19F nucleus were recorded with a Bruker SXP pulse spectrometer using a high resolution magnet and an « Aspect 2000 » computer. The temperature was stabilized within ± 0.5 K. The spectra linewidths were measured with an accuracy of ± 0.3 Hz for non-rotating samples. The samples were specially prepared in order to minimize the presence of impurities (especially HF and paramagnetic impurities), and sealed in 5 mm o.d., 4 mm i.d. quartz tubes.

The 19F Fourier transform NMR spectra were used for measuring the HF content in saturated vapour UF$_6$ samples. The sample with molecular concentration UF$_6$/HF = 1/4 has a linewidth at half height 1.6 times smaller than that for a sample in which no trace of HF was detected. The measurements were performed at $T = 328$ K. That is the reason why for the low density saturated vapours of UF$_6$, in equilibrium with the solid phase at $T = 325$ K, the 19F NMR spectra did not reveal any systematic 235U concentration dependence [3]. At high temperatures,
for saturated UF₆ vapour in equilibrium with the liquid UF₆, the effect of HF accidentally present during the sample preparation is negligible because the UF₆ gas pressure is very high in these experimental conditions. Contrary to the behaviour of liquid UF₆, the influence of paramagnetic impurities which might come from the radiolysis of UF₆ can be totally excluded for gaseous UF₆.

The ¹⁹F NMR spectrum of saturated UF₆ vapours, 93.29 % enriched in ²³⁵U at T = 393 K was recorded. No multiplet structure was put in evidence. The linewidth at half height is Δν₁/₂ = 163 ± 0.3 Hz and a spectral width of 1.2 kHz was used. At this temperature the UF₆ vapour pressure is 6.61 atm. and the density is 84.9 kg/m³. For this density value the efficiency of the spin-rotation relaxation mechanism is substantially diminished and a possible multiplet structure should be detected.

The simultaneously recorded NMR spectrum of ¹⁹F in vapour and liquid UF₆ with ²³⁵U in natural abundance is presented in figure I. A chemical shift of 10.6 ppm for ¹⁹F signal in the vapour phase relatively to the liquid phase was put in evidence.

The ¹⁹F NMR spectra of liquid and vapour UF₆ phase, for 0.71 %, 49 % and 93.29 % ²³⁵U enrichment were separately and simultaneously recorded at T = 363 K. The spectral width was 10 kHz and 256 scans were used. The linewidths at the half height of the ¹⁹F NMR absorption line for these nonrotating samples are presented in table I.

![Diagram of liquid and gaseous UF₆](image)

Fig. 1. — ¹⁹F NMR absorption spectrum in liquid and gaseous UF₆ (²³⁵U in natural abundance) at T = 383 K, simultaneously recorded.

Table I. — The linewidths at the half height (Δν₁/₂) for the ¹⁹F NMR absorption line for nonrotating samples of liquid and saturated vapours of UF₆ recorded at T = 363 K for different values of ²³⁵U enrichment.

<table>
<thead>
<tr>
<th>E (%)</th>
<th>Liquid Δν₁/₂ (Hz)</th>
<th>Saturated vapours Δν₁/₂ (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.71</td>
<td>20</td>
<td>256</td>
</tr>
<tr>
<td>49.00</td>
<td>50</td>
<td>265</td>
</tr>
<tr>
<td>93.29</td>
<td>85</td>
<td>287</td>
</tr>
</tbody>
</table>
The 19F NMR absorption spectra linewidths in saturated UF$_6$ vapours in equilibrium with liquid UF$_6$ in the temperature range $333 \leq T \leq 363$ K, for different values of 235U enrichment are presented in figure 2.

It is possible to make an order of magnitude estimation for the enrichment effect detected in UF$_6$ gas. The linewidth modification induced by various 235U enrichments is related to the 19F-235U indirect scalar interaction, modulated by rapid 235U quadrupole relaxation. The contribution to the linewidth due to enrichment effect, for 19F NMR spectra recorded on 235UF$_6$ molecules (enrichment in 235U isotope, $E = 100\%$), could be described by the relation [2],

$$\Delta \nu_{1/2} \approx \frac{21}{4} J^2 \left[T_U + \frac{T_U}{1 + (\omega_F - \omega_U)^2 T_U^2} \right]$$

where T_U is the 235U nuclear magnetic relaxation time. An order of magnitude estimation for T_U can be obtained from the measurement of 235U linewidth spectrum recorded at $T = 380$ K in liquid UF$_6$ [7]. We suppose that for the gaseous phase the value of $T_U \approx 20 \mu$s is valid and $J \approx 50$ Hz. Using these parameters we obtain from equation (3) for the contribution of the enrichment effect to the linewidth the value $\Delta \nu_{1/2} \approx 10$ Hz, which is in satisfactory agreement with our experimental results, $\Delta \nu_{1/2}(E = 93.29\%) - \Delta \nu_{1/2}(E = 0.71\%) \approx 30$ Hz.

In conclusion, an enrichment effect similar to the effect put in evidence for liquid UF$_6$, was also detected for gaseous UF$_6$. The linewidth modification induced by various 235U enrichments is related to the 19F-235U indirect scalar interaction modulated by rapid 235U quadrupole relaxation.

A detailed study of the 235U enrichment effect on the longitudinal and transverse relaxation times of 19F in gaseous UF$_6$ will be published elsewhere.
Acknowledgments

The authors are indebted to Dr. P. Rigny and Dr. J. Virlet for a critical reading of the manuscript and valuable suggestions.

References