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Résumé. 2014 Il est démontré que le théorème des valeurs propres négatives et les méthodes de matrice
de transfert peuvent être considérés d’un même point de vue unifié pour être ensuite généralisés
au calcul des densités d’état projetées, ou plus généralement au calcul de n’importe quelle combinaison
linéaire d’éléments de matrice de l’inverse de grandes matrices symétriques aléatoires. Comme
exemple d’application on présente les résultats de simulations pour les comportements à un et à
deux modes du spectre Raman des cristaux mixtes unidimensionnels ainsi qu’une analyse de taille
finie pour les exposants de la classe d’universalité de percolation des forces centrales.

Abstract. 2014 It is shown that the Negative Eigenvalue Theorem and transfer matrix methods may be
considered within a unified framework and generalized to compute projected densities of states or,
more generally, any linear combination of matrix elements of the inverse of large symmetric random
matrices. As examples of applications, extensive simulations for one- and two-mode behaviour
in the Raman spectrum of one-dimensional mixed crystals and a finite-size scaling analysis of cri-
tical exponents for the central force percolation universality class are presented.
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There is a large class of problems in various fields of physics whose solution is in principle
obtained by inverting large random matrices. The calculation of densities of states (DOS) (total,
local, projected...) for phonons, electrons or spin waves, occupation probabilities in random
walks or the conductivity of resistor networks are all examples of linear problems whose solution
is in general trivial for ordered systems on regular lattices but extremely difficult in disordered
systems because it then requires the inversion of large random matrices.
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Nevertheless, it has been realized early [1, 2] that numerical simulations are a very useful tool
to understand the behaviour of disordered systems. For the kind of problems discussed above,
a numerical simulation means solving exactly the equations of motion for a large ( 104 sites or
more) but finite lattice generated by a Monte Carlo procedure. There exists a large number of
methods which were developed to handle efficiently the special kind of matrices of interest to
physicists. These are in general sparse (many zeros) and of block tridiagonal form. To name only
a few methods, there is the Negative Eigenvalue Theorem which has been used to compute total
DOS [3], transfer matrix methods [4, 5] which are used for example with finite size scaling to
compute the conductivity of random resistors networks, and the Haydock-Lanczos recursion
method [6] which is used to compute total, local or projected DOS.

In this paper, we

(a) point out that the Negative Eigenvalue Theorem and transfer matrix techniques may be
viewed as special cases of the same general transfer matrix method, which can also be used to
compute projected DOS;

(b) show how the above general method can be made more efficient by calculating only the
needed matrix elements of the inverse matrix;

(c) give two examples of applications : one to one- and two-mode behaviour in mixed crystals
and one to the calculation of exponents of a new percolation universality class. The general
method we present is related to the Gaussian elimination method as we further discuss at the
end of this paper.

Let us first recall some known analytic results which clearly show that DOS, projected DOS or
conductivity problems can be considered from a unified point of view [7]. Let [8]

where the argument of the exponential is written in matrix notation, UT = (Mi, U2, ..., UN) and

In the electronic tight binding approximation, H is the Hamiltonian, E the energy eigenvalue
times the identity matrix with a convergence factor 11. A simple redefinition of symbols allows
one to make analogous definitions for phonons, random walks, spin waves etc... The Gaussian
integral in equation (1) can be performed by standard methods. From this integral, one can derive,

and

The imaginary part of equation (4), in the limit 11 goes to zero, clearly gives the total DOS.
With the proper choice of J, one can compute any projected DOS one wishes. For example, for
a lattice with alternating charges on each site,
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would allow one to compute the projected DOS relevant for Raman scattering from Im (02 F /OX2).
Also, to compute the bulk modulus, one simply needs to start with E+~-~2013 ~2013~=0,
H equal to the matrix of force constants, and elements of the vector J equal to 0 for sites not on
the surface and to x for sites on the surface. The average displacement of surface sites can then be
computed from 02 F /OX2 and allows one to calculate the bulk modulus. An analogous calculation
may be done for the conductivity of a random resistor network.
While much of the above results are familiar, it has apparently not been realized before that the

generating function or its derivatives could be computed recursively, providing an efficient
numerical scheme to attack any of the above problems. We proceed to show that recursion rela-
tions may be obtained which are general but reduced in the appropriate limit to those used in
conjunction with the Negative Eigenvalue Theorem or with transfer matrix methods. First, for
a problem in arbitrary dimension, we can always single out a direction and write for the argument
of the exponential in equation (1) :

where Ui refers to the ni sites of the fth slice of the system, Xi is a ni x ni matrix, Yi,i+ 1 a ni x ~+1
matrix. In other words, Xi and Yi, i + 1 are respectively the diagonal and off-diagonal blocks of
the block tridiagonal matrix (E + i 11 - H). Performing analytically the Gaussian integral in
slice 1 of the system renormalizes the matrix X2 and the vector J2 and gives terms which are
independent of all the Ui. We call the latter terms C2. The problem is now the same as the original
one with one less slice. That process can be repeated, generating the following recursion formulae,

with initial conditions

Equations (7) and (9), the latter with Li = 0, are the Negative Eigenvalue Theorem. Indeed,
in the limit 11 -+ 0, one can show (see Eq. (4)) that the imaginary part of F is simply equal to
n/2 times the total number of states up to energy E. Equations (7) and (9) then simply say that,
in the limit q goes to zero, F may be computed from the total number of negative eigenvalues ot
the smaller matrices Zi. The detailed proof is slightly more complicated than outlined here and
should be given elsewhere. Note in passing that as with the Haydock-Lanczos method, keeping
here a finite value of 11 helps to compare with experiment since the spectra thus obtained are
smooth on a scale of 11 which may correspond to intrinsic linewidth or experimental resolution.
As mentioned earlier, the conductivity of a random resistor network may be obtained from

derivatives of the corresponding F with appropriately chosen values of J (as described below
Eq. (5)). Recursion formulae for derivatives of F are easily obtained using the chain rule. The
resulting set of recursion relations is closely related to the transfer matrix method of Derrida
et aL [5] and has the same advantages.

It should now be clear that the Negative Eigenvalue Theorem or transfer matrix methods
may be generalized to compute arbitrary projected DOS. For example, in the case of zone centre
optic modes, which correspond to J chosen as in equation (5), one would use the chain rule to
arrive at the result that one must use equations (7) and (8) with x = 1 and Di+ 1 = Di + LT Z~ 1 Li
to compute azF/ax2 = DN. 

’ ’
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Equation (7) still involves inversion of matrices whose size can also vary as a function of i, as
is the case in the percolation problem when sites are completely disconnected. Following a
suggestion of Derrida et al. [5], we improve the speed (by a factor of about three) and ease of the
calculation of DOS, projected DOS, etc... by deriving an equivalent set of recursion formulae,
obtained by eliminating one site at a time instead of a slice at a time. One then does not have
to explicitly invert any matrix and the calculation time is reduced because, in a sense, one is
concentrating only on the elements of the matrices Z -1 one really needs. In the percolation
problem, when a site is completely disconnected, one simply « jumps» over it. Note that with
this method, one has effectively a one dimensional problem with long range interactions. For
example, with a two dimensional system of width n and length N, the longest range interaction
is with the n’th neighbour. The range does not increase upon iteration but all possible neighbour
interactions between first and n’th are generated by the recursion. Computation time increases,
for n and N large, as n3 N. In that limit, storage increases only as ~/2.
The problem of one- and two-mode behaviour in the Raman scattering off mixed crystals is

our first example of application. Consider a one dimensional mixed crystal of the type AB1-c C~.
Every other atom is an atom of mass MA. The other sublattice is populated with atoms of mass
MB with probability 1 - c and Me with probability c. Raman scattering from such compounds [9]
(or higher dimensional versions [10]) reveals one or two Raman modes depending on the compound
and on concentration c. Attempts have been made to explain this behaviour by pure mass disorder
(neglect of the force constant disorder) [11]. We have studied such a model. Figure 1 displays a
two-mode spectrum obtained in our calculations [12]. Figure 2 gives the parameters for which
we have obtained one- or two-mode behaviour. It should be noted that the one- to two-mode
transition is not sharp (the approximate width is indicated on the figure) especially in one dimen-
sion. Given this uncertainty, the CPA and our results agree equally well with most experiments [10].
We have verified that interchain coupling seems to make the transition region better defined
(less structure in the spectrum). Additional results are discussed elsewhere [13].
Our second example of application is with exponents associated with the new percolation

universality class found by Feng and Sen [14]. They considered the problem of bond percolation
where the bonds have a central force component (Bom model). They showed that the exponent /
describing the vanishing of the effective force constant at the percolation threshold is different

Fig. 1. - Example of projected DOS p as a function of (J)2 for two-mode behaviour. MA = 4.0, MB = 2.0,
Me = 1.0, concentration c = 0.5, ~ = 0.01.
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Fig. 2. - p = MB/MA and s = 1 - (MdMB) with M oc MB. For each value of the concentration c, two-
mode behaviour is observed to the right and one-mode behaviour to the left of the line.

from the conductivity exponent t which one finds in the-case of isotropic forces. We did a finite
size scaling analysis of this problem in the spirit of Derrida et al. [5] but with our approach. We
considered strips of a triangular lattice in two dimensions of width n, long enough that the effective
force constant had very little statistical fluctuations (Typically, N = 2 000 for n = 3 to 48 and
N = 460 for n = 77). The top side of the strip is connected to a rigid wall while the sites on the
bottom side are attached by a strong isotropic spring (103 times the central force strength). This
is the analog of the shorts in reference [5]. We then apply a unit force on every site at the bottom
and compute the average displacement from a second derivative of the generating function. The
large isotropic force constant at the bottom is necessary to avoid pushing on clusters which are
disconnected from the wall. The value 103 of that force constant is not as critical as if we were
pushing on only one end of the spring (cf. Ref. [5]). Note also that we must allow for a small
(10- 5 or smaller) isotropic component to each central force to avoid indeterminacies associated
with the lack of restoring force for displacement of clusters in certain directions. The accuracy
of our calculation is limited by the value of this small isotropic component when the effective
spring constant is too ’small. Smaller values of the isotropic component lead to numerical errors.
From the scaled variable plot of figure 3, we can extract the percolation threshold Peen = 0.65 ± 0.005
for the triangular lattice and the exponents f = 1.4 ± 0.2 and Ven = 1.05 ± 0.15. For isotropic
forces, v = 4/3, t = 1.28 and Pc = 0.3473. Our results thus suggest that f &#x3E; t and Veen  v.

The above values of Peen and f are appreciably different from the estimates of Feng and Sen,
Peen = 0.58, f = 2.4 ± 0.4. Our calculation is definitely more extensive. It is also the first time
vcen is computed. Our value f/veen = 1.35 ± 0.25 falls within the upper and lower bounds pro-
posed by Rammal [15].
A few final remarks :

(a) Note that if one writes down recursion relations for aLr/aJs and a2F/aJr aJs for all values
of r and s, one can find all the elements of the inverse of an arbitrary symmetric matrix. In our
case, one can show that our method is in a sense Gaussian elimination for symmetric matrices.
Here, we have improved Gaussian elimination both by specializing it to block tridiagonal matrices
and by calculating only one element or linear combination of elements of the inverse matrix.

(b) Even though our method is easily applicable to finite systems of arbitrary spatial dimension,
it is especially fast for quasi one dimensional systems. The Haydock-Lanczos recursion method,
which differs from ours, is faster for systems of high dimension.
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Fig. 3. - Logarithm of the effective scaled shear modulus (Ln (K/I p - pcen If )) as a function of log of
scaled system size (Ln (M/!~ 2013 peen I ’’"n)) for Peen = 0.649, f = 1.4 and Veen = 1.0 and various values of
p : 0.60, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.69. The top universal curve is for p &#x3E; Peen’ the bottom one

for p  Peen. The same symbol is used for all values of p to avoid cluttering the figure.

(c) In contrast with the latter method, we do not need to store information about all the lattice
to obtain DOS projected on Fourier modes.
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