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Résumé. 2014 Certaines propriétés des réseaux fractals sont indépendantes du plongement Euclidien.
Les implications de cette invariance sont discutées pour divers problèmes : conductivité d’amas de
percolation, inégalités entre dimensions intrinsèques, coefficient de diffusion dans un milieu poreux
en présence d’un écoulement.

Abstract 2014 Certain properties of fractal lattices are independent of the Euclidean embedding.
The implications of this invariance are discussed for various problems : the conductivity of percolation
clusters, inequalities between intrinsic dimensions, and the diffusion coefficient in a flow through a
porous medium.
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1. Introduction.

The description of certain natural objects by fractals [1] is an idea which has recently met growing
success in statistical physics. The study of physics on fractals sheds a new light on the notion of
dimension : many properties, which for regular Euclidean lattices depend simply on the space
dimension d, cannot be described by a single parameter on fractal lattices. In addition to the
Hausdorff or fractal dimension D, which is defined through the mass contained within a given
Euclidean distance, other independent numbers replace d in various expressions. For instance,
the spectral dimension [2] d governs the density of states of low-energy excitations, diffusion
and conduction properties, and renewal statistics. The spreading or connectivity dimension [3-6,14]
d describes the number of sites accessible in a given number of steps along the lattice, and controls
the behaviour of localized impurity states [7].

It has been pointed out [8] that, among the properties of a fractal lattice, some are intrinsic,
i.e. they do not depend on the way the lattice is embedded in Euclidean space. For instance,
the spectral dimension of a chain is always d = 1, whereas its fractal dimension may be D =1

(case of a straight line), D = 4/3 (self-avoiding walk in two dimensions), D = 2 (plane-filling
Peano curve). The purpose of the present Letter is to emphasize that the notion of intrinsic
property is a deep and useful one, which helps to formulate relations between various quantities
and clarifies their content. It shows that some relations have a higher degree of generality than
others, which in turn can only be accidental and due to some special feature of the particular
embedding considered. This remark may be important for example when one tries to prove,
or disprove, a proposed conjecture on critical exponents.
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The first part of this Letter is devoted to general considerations and a discussion of intrinsic
properties of percolation clusters. The second part contains some specific applications to bounds
and inequalities for intrinsic dimensions, and to diffusion of a dye molecule in a porous medium
in the presence of a flow.

2. Fractal invariance and intrinsic properties.

Most fractal objects of physical interest possess a scaling invariance, meaning that their structure
is self-similar under dilation (in practice, this will hold only in a wide range of scales between
the lattice constant and a macroscopic length). Transformations of a scaling object which preserve
its scaling invariance and its topological properties - such as the coiling of a linear chain into
a Peano curve - may be called « fractal deformations. In general, they do not preserve the
Hausdorff dimension D of the original object, and one may obtain a whole set or « family » of
objects of varying D by applying various deformations. The physical properties which are inva-
riant under such transformations are intrinsic and hold for the whole fractal family, whereas
the other properties are extrinsic and belong to the particular realization considered
A first important consequence is that a relation between intrinsic properties is valid for a fractal

family, and it is sufficient to derive it for a particular member. Conversely, a relation between
an intrinsic property and an extrinsic one must be a consequence of a specific feature of the family
member for which it is derived. In many cases, the original derivation of a new relation involves
extrinsic expressions, which may obscure the underlying invariance properties : it is therefore
desirable to formulate the result in a way that explicitly displays fractal invariance when it exists.
We now recall some relevant definitions and general properties. The spectral and spreading

dimensions d and d may be respectively defined through the asymptotic behaviour of SN, the
average number of distinct visited sites in an N-step random walk on that fractal [2], and of A~.,
the number of sites accessible within N steps on that fractal from a given origin. [3-5] :

These definitions make no reference to Euclidean distance between lattice sites, so SN and AN
and the dimensions d and d are independent of the embedding in space and are intrinsic pro-
perties. In some cases, like the Sierpinski gaskets, d is equal to the fractal D, but this is accidental :
the Euclidean metrics happen to be equivalent to the natural metrics on the graph defined by
these lattices [3]. A more detailed discussion of this point will be given later.
One of the most studied fractal objects is the incipient infinite cluster at the percolation threshold

Pc’ and the question arises naturally of knowing which of the related critical exponents are intrin-
sic. Near pc, the probability P(p) that a site belongs to the infinite cluster behaves as (p - p~)a,
and the exponent is intrinsic since P(p) is unaffected by a fractal deformation. The same result
holds for the exponent y of the mean cluster mass, but not for the exponent v of the connectivity
length ~ ~ (p - pc)-’. Indeed, in a fractal transformation of the underlying lattice, the con-
nectivity distance measured on a path along the cluster does not change, but the corresponding
length measured in Euclidean space becomes

if the fractal dimension of the cluster is changed from D to D’. The exponent o is modified accord-
ing to
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so the combination Dv is invariant, as originally pointed out in reference [8]. This result may be
also obtained directly by considering the typical mass M * (i.e. number of sites) of a large cluster,
just below p~ :

More generally, properties involving a mass or a time, but no Euclidean distance, are intrinsic.
It is instructive in this respect to consider the conductivity ~ ~ (p - p~. As discussed by

several authors [2], the time T needed for a random walker to diffuse on the typical length, above
pc, is given by

This time is not affected by a fractal deformation, so its exponent is intrinsic : this shows that the
combination (t + 2 v) is intrinsic, though t itself is not. Using exact relations between t and other
exponents [2], one can write a relation where both sides are explicitly intrinsic :

It is interesting to observe that this combination of exponents varies little with d : t + 2 v = 4

for d &#x3E; 6, 3.7 + 0.1 for d = 3 [9] and 3.96 ± 0.01 for d = 2 [10].
The conductance g of a fractal cluster is usually expressed as a function of its linear size L :

with j6j = D( d - 2)/ ¡"This can be written in intrinsic form, in terms of the mass M of the cluster :

The much discussed Alexander-Orbach conjecture [2], d = 4/3 for percolation, corresponds to
g - M -1’2 for all d &#x3E; 2.

3. Bounds on intrinsic dimensions.

The various dimensions discussed above are not simply related to one another a priori, but there
exist some general inequalities between them. Let us consider the shortest path through an
isotropic fractal lattice. If this path has 2 Lmin steps, the number ALmin of accessible sites in Lmin
steps will be a finite fraction of the total number of sites M, unless most of the mass is contained
in very long filaments dangling off the backbone of the lattice (i.e. its doubly connected compo-
nent). Excluding this case, one has for a fractal of Euclidean linear size 2 L [11, 12] :

The shortest path Lmin has a power law dependence on L [13, 14], which may be written :

so the exponent 6 is given by

which is well verified numerically for the infinite percolation cluster [11, 12] (e.g. for d = 2 :
D ~ 1.896, d = 1.65-1.7, 6 = y~/v ~ 1.12 ± 0.02 [14]).
Now, the Euclidean distance between two lattice sites is never larger than the shortest path

along the lattice, whatever the fractal deformation :F considered, so :
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On the other hand, the spectral dimension obeys the inequality [2] J ~ D. If there exists a defor-
mation :F 0 such that d = D(3~,), this inequality holds for D(:; 0) and one can conclude that

for all members of the fractal family. Relation (13) has been first proposed by Rammal et al. [3],
who conjectured that it holds for any fractal. Objects for which d = D, such as the Sierpinski
gaskets, appear in the light of the above discussion as the natural realizations of their family,
in the sense of maximum geometrical simplicity.
Another inequality may be obtained by generalizing a relation derived by Witten and Kantor

[15] for branched objects without loops. By considering the conductance between the centre of
such a branched fractal and a large surrounding sphere, these authors have shown that the
exponent 6 of the shortest path is then given by :

(In other words, 6 = 2013 ~ see Eq. (7)). This gives, for branched fractals, using equation (11),

In the case of a general isotropic fractal, let us choose an origin A on the backbone and draw a
large sphere of origin A and radius L. For every point P of the sphere connected to A, keep the
shortest path on the fractal between A and P (choose one of them if there are several such paths) :
the ensemble C of shortest paths is a subset of the backbone, and is branched in the sense of
Witten and Kantor, so relation (14) holds for C. Since the conductance gc of C is necessarily
smaller than the conductance g of the full fractal (or its backbone), one deduces from (7) for the
conductance g(L)

The right-hand side of this equation is just 5~, according to equation (14), which is by construction
equal to 6 for the full fractal. Using 5 = Did and dividing both sides by D, one finally obtains :

which can be combined with (13) to write

Fdr the infinite percolation cluster in two dimensions, the best available numerical results [3, 5]
give d = 1.65 - 1.7, ¡¡ ~ 1.32 :t 0.01, and 2 d/(1 + d) = 1.25 :t 0.01, whereas for the backbone
dB = 1.44 ± 0.03 [10], dB = 1.25 ± 0.01 [16] and 2 dB/(1 + dB) = 1.19 ± 0.02. For d = 3,
d = 1.83 ± 0.02 [5, 11] and 2 d/(1 + d) = 1.29 ± 0.01 is very close to d- - 4/3. The new lower
bound in (17) is seen to be rather strong in all these cases.

4. Diffusion in a flow through a porous medium.

The properties of isotropic random walks on percolation clusters and fractal objects have been
intensively studied, and anomalous isotropic diffusion on fractals is now well understood. By
contrast, the problem of biased diffusion in a random medium remains of current interest [17,18],
in connection with the diffusion of dye molecules or contaminants through a porous medium,
in the presence of a steady flow [19, 20].
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A detailed description of flow in a porous medium is quite intricate, and here only the regime
just above an injection threshold will be considered. In this regime, the injected non-wetting
fluid partially fills the porous matrix, and the network of filled pores may be reasonably described
as an infinite percolation cluster above Pc [19]. Diffusion properties then depend on the relative
importance of convection along the backbone and molecular diffusion in the dead ends. By
analysing these two contributions for a small pressure difference (p - Pc) above the injection
threshold, de Gennes [19] has argued that the longitudinal diffusion coefficient Dil is given by :

with

In expression (18), D corresponds to the diffusion of the dye along the average fluid flow, U is
the average velocity of a fluid particle, measured in the flow direction, ~ is the correlation length
for percolation and Da is the diffusion coefficient in the absence of flow.
To study the intrinsic aspects of diffusion, it is useful to note that a diffusion coefficient has the

dimension of (length)2 j(time), so the combination D 11 /~’ is the inverse of a time. Following the
discussion given above for the conductivity, this quantity is expected to be intrinsic, and its
exponent (w + 2 v) should be given by an intrinsic expression. This is not the case for equa-
tion (19), since t is not intrinsic as discussed earlier.
The crucial point in the derivation of equation (18) is that the velocity involved is the average

velocity U over all possible positions of the dye particle, including dead ends, and not the average
velocity UB for particles on the backbone, as one might naively expect. However, the local velocity
UB of the dye appears at an intermediate stage in the calculation : the magnitude of this local ,

velocity can be defined with respect to the local pore structure, so it does not depend on the
embedding in Euclidean space and is an intrinsic quantity. In practice, this means that the shortest
path length through the solid should be used in the calculation of average velocities, instead of
the physical length of the system. _ _

This remark leads to replace U by U’ = E/(JL~/L) ~ equation (18). Noting that

with /L = v(5 2013 1) for consistency with equation (10), one obtains

where

is now an intrinsic exponent, in agreement with the general discussion. Finally, the critical expo-
nent of the diffusion coefficient is given in the present theory by

Using recent numerical values for t/ v [19] and d [5, 11 ] in three dimensions, expression (12) gives
o)/v~ 2013 0. 3, whereas the new result (20) predicts c~/v~ 2013 1, hence a much stronger divergence.
Numerical evidence for a rather strong divergence of D 11 has been recently found by Sahimi
et al. [21 ], for two-phase flow near the percolation threshold. This is not entirely conclusive, because
their model is somewhat different from the present one. Also, the region where the asymptotic
form (21) is valid may be narrow and difficult to study on samples of limited size. The same caveat
holds for the application to physical porous systems, and the tortuosity effect described by
equation (23) might be difficult to observe in practice.
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5. Conclusion. 
"

The common theme in the questions considered here is the general idea that intrinsic properties
of fractal objects should be given special attention. Our presentation has been sketchy and
illustrative, but the notion of invariance under scaling transformations, which has been hinted
to, is probably deep. ~
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