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Résumé. 2014 Nous décrivons les défauts dans un empilement tétraédrique compact. Les défauts
apparaissent comme des réseaux enchevêtrés de disinclinaisons qui sont le lieu des sites ayant un ordre
local non icosaédrique. Cette structure est produite par un processus itératif qui abaisse progressi-
vement la courbure d’un polytope utilisé comme modèle idéal.

Abstract. 2014 We describe the defect structure of a tetrahedral close packed model. Defects appear as
a hierarchy of interlaced disclination networks which form the locus of sites where the local order
deviates from a perfect icosahedral environment. This defect structure is generated by an iterative
process which gradually decreases the curvature of an ideal polytope model.
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Amorphous systems are structurally characterized by the lack of long-range periodicity and
the presence of a rather well defined short-range order (SRO). The local configurations are
generally such that they cannot tile perfectly the 3D Euclidean space (R3). As an example let us
consider amorphous metallic systems. It is well known that a satisfactory approximation of the
structure is given by close packing tetrahedra. A regular tetrahedron is the densest configuration
for the packing of four equal spheres. The dense random packing of hard spheres problem can
thus be mapped on the tetrahedral packing problem. The dihedral angle of a tetrahedron is not
a submultiple of 2 ~, consequently a perfect tiling of the Euclidean space with regular tetrahedra
is impossible. One of us (J.F.S.) has proposed to define an ideal amorphous structure by allowing
for curvature in the space in order for the local configuration to propagate throughout the whole
space without defects [1]. The analogue in 2D is the perfect tiling with regular pentagons, impos-
sible on the plane and realized on the surface of a sphere (S2) by the pentagonal dodecahedron.
In 3D space it is possible to pave the (hyper) surface of a hypersphere (S3) by regular tetrahedra
arranged by five around a common edge. This (finite) structure is called the polytope { 3, 3, 5 }
using standard notation [2]. Note that the underlying space is 3 Dimensional although not
Euclidean even if one often thinks of S3 as being imbedded in R4. This « constant curvature »
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idealization has been extended to several other kinds of disordered materials such as tetra-
coordinated covalent systems [3]. A simple example is given by the packing of pentagonal
dodecahedra which is forbidden in R3 because of the polyhedron’s dihedral angle value. Packing
these dodecahedra on S3 leads to the regular polytope { 5, 3, 3 } which is dual of the above men-
tioned { 3, 3, 5 } and thus possesses the same symmetry group. However the curvatures asso-
ciated with these two polytopes are not identical (when scaled to the edge length) and this reflects
the unequal difficulty in tiling R3 with tetrahedra or dodecahedra due to their different deficit
dihedral angles. A given cell may also give rise to various ideal packings specified by the number
of such cells sharing a common edge. We expect that a suitable map of this ideal model onto R 3
(minimizing the energy) will provide a realistic amorphous structure. It is then clear that, for
physical reasons, the best ideal model associated to a given local configuration will correspond
to a minimum absolute value of the curvature (either in spherical or hyperbolic space). The
mapping introduces distortions and topological defects, among which disclination lines play
an important role. In the present paper we show how it is possible to annul the curvature using an
iterative procedure which introduces step by step disclination networks. It could seem to be
simpler to introduce disclinations one by one. But up to now one is then faced to unsolved pro-
blems, which we briefly discuss now. The defect lines can be classified using the homotopy theory
of defects [4] and belong to conjugacy classes of the fundamental group R = ~1 (SO(4)/G)
where G is the polytope symmetry group. Recently D. Nelson [5] has labelled line defects in a
« Euclidean icosahedral medium » using ~1 (SO(3)/Y) = Y’ where Y is the icosahedral group
and Y’ its lift in SU(2). Note that Y’ is a subgroup of G6 and the only structure free of defects
in this context is precisely the polytope { 3, 3, 5 }. Nelson argues that it is possible to describe the
linear defects in the { 3, 3, 5 } by the conjugacy classes of Y’. To show this he splits SO(4) into a
rotational part SO(3) and a translational one SO(4)/SO(3) and suggests that it is enough to
consider defects in the orientational part, these fundamental defects being then used to build the
more composite translational ones. Sethna [7] has objected to this simplification but the question
still remains open [13]. In fact, elements of Y’ are not true rotations on S3 but act as screws, with
no points left invariant and with geodesic great circles as orbits. The introduction of a single
disclination line along a five-fold symmetry axis (being then the locus of Z14 vertices following
standard notations [8]), which is purely rotational, corresponds to combined left and right
screws, an element of G = Y’ x Y’/C2 (where C2 is the two-elements group). Note that
R = 7~ (SO(4)/G) = Y’ x Y’. We have already shown that it is possible to interlace two such
disclination lines into the 120 vertices polytope { 3, 3, 5 } and get a polytope containing 144
Z 12 vertices and 24 Z 14 vertices [9] with less intrinsic curvature. One might hope to iterate this and
achieve the complete flattening of the structure. The final model will consist of regions of positive
curvature, where the polytope SRO is maintained, and of negative curvature associated with the
line defects, arranged in such a way that the mean curvature is zero. In this corrugated space
approach [10], or variable curvature idealization, the local order is still perfect within coherence
regions.
To put all this in a concrete form, one has to incorporate step by step disclination lines into the

polytope. The non-commutative character of the required operations (R is non Abelian) intro-
duces new difficulties which have not been cleared up at the moment. On the other hand this non-
Abelian character is the key to understanding how it could be possible to generate very complex
disordered structures starting from a regular polytope and using only a finite collection of defect
operations. An « alphabet » can be defined whose elements, the « letters », denote each kind
of defect (the conjugacy classes of R). The structure is then represented by a « word », an ordered
set of letters, and its complexity is encoded in the information content of the word
We show how it is possible to bypass the above mentioned difficulties and achieve the complete

flattening of the polytope in a simple and tractable manner. The key idea is to introduce, at each
step, a disclination network (instead of a single disclination line) whose symmetry group is
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contained in G. The first and second-neighbour shells of a { 3, 3, 5 } vertex are an icosahedron
and a dodecahedron [1] respectively. Such a configuration has an intrinsic length associated
to it, the { 3, 3, 5 } radius of curvature R1. Ignoring the central vertex and its icosahedral shell one
can build a perfect tiling of the dodecahedral shells on S3, the polytope { 5, 3, 3 }, which is charac-
terized by another radius of curvature R2 (&#x3E; R1). Filling in the dodecahedral cells by the centred
icosahedra, one obtains a new polytope, called P l’ containing 1560 12-coordinated vertices
(Z12 sites) and 600 16-coordinated vertices (Z16 sites). The disclination network, which we call
D 1, of this new polytope consists of the edges of the large { 5, 3, 3 } inscribed in it and connecting
the Z16 sites. A 2D image of such structure would be a big sphere of radius R2 covered by small
domes of radius R1 smaller than R2 (think of a strawberry surface). Note that by centring the
12 000 tetrahedral cells of polytope P1, one gets the dual polytope Q1 which is tetracoordinated
and consists in a tiling of dodecahedra and 16-sided cells which are the Voronoi cells of the
Z16 sites. Because both the polytope and the defect structure have the same symmetry group,
it is very easy to iterate this transformation and get a new polytope P2. The precise way to do
this will be published later. It involves the definition of a primitive cell, called the orthoscheme
tetrahedron [14], from which the polytope vertices are generated under the action of the sym-
metry group operations. This primitive cell contains 1 site in the case the { 3, 3, 5 } (which can be
called Po), 3 sites in the P 1 case, 14 sites in the P2 case... If one orients the { 3, 3, 5 } polytope in
such a way that one vertex is on the « north pole » (with coordinates 0, 0, 0, x4 = 1) of the unit
radius hypersphere Sg, its icosahedral first coordination shell lies on the hyperplane x4 = 0.809
and the dodecahedral second coordination shell lies on the hyperplane x4 = 0.5. The dual
polytope { 5, 3, 3 } has a dodecahedral cell which surrounds the north pole at x4 = 0.926. The
first iteration consists in « pushing » the { 3, 3, 5 } sites toward the north pole in order to make
the { 3, 3, 5 } dodecahedral cell (at x4 = 0.5) coincide with the { 5, 3, 3 } dodecahedral cell (at
x4 = 0.926). Sites lying inside the orthoscheme tetrahedron are then used to generate the Pl
polytope by application of the G group symmetry operation. This process is easily iterated in
order to build the next ?~.
The polytope P2 obtained at the second iteration contains two interlaced disclination networks,

whose union is denoted D2, which have different characteristic length scales related to their
nearest node separation. The first one, D;, has the polytope { 5, 3, 3 } structure with a large edge
length value. Its edges thread the 6-fold rings of the second disclination network D~ which has
the structure of the Q1 polytope. The polytope P2 contains Z12, Z16 and Z14 sites. These new
Z 14 sites are edge vertices of the D; disclination network. The coordination shell of the Z 12, Z 14
and Z16 sites are shown in figure 1. The local arrangement ofD; and D~ is represented in figure 2.
When the transformation is iterated again, larger polytopes P~ are obtained with increasing mean
radius of curvature. Their defect structure D" is given by the union of n disclination networks,
which have no point in common and have the same geometrical structure as the n polytopes

Fig. 1. - Coordination shells of Zl2(a), Z I 4(b) and Zl6(c) sites. Sites lying on disclinations are darkened.
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Fig. 2. - Local view of the disclination network. Heavy line : D; disclinations (which have the same topo-
logical structure as D 1)’ Light line : D~ disclinations interlaced with the previous network.

Qp (p = 0,..., n - 1) dual to Pp. Here Qo denotes the polytope { 5, 3, 3 }. Table I displays infor-
mation about the Pn up to n = 5. These quantities can be obtained for small n by the direct
« inflation » method which uses the symmetry group operations in order to build structures of
increasing size. But the table I data can be derived more simply without explicitly building the
polytopes. The main effect of the iterative transformation can be put in the matrix form
J1f’~~~ = M .Ni(i - 1) where X(p) is a 3D vector whose components (N 11, N14, N lPJ) are the total
number of Z12, Z14 and Z16 sites in the polytope Pp. At a given iteration the Voronoi cell of a
Z12 vertex is filled by 13 new Z12 vertices and 20 new Z16 vertices. A Z16 vertex is common to
4 Voronoi cells, and thus a correct count of the new vertices requires that only 5 Z16 new vertices
are associated to 1 « old » Z 12 vertex. This can be written Z 12 -~ 13. Z 12 + 5. Z 14.
A Z14 Voronoi cell is filled by 12 Z12 vertices, 3 Z14 vertices, and 24 Z16 vertices. Finally a

Z 16 Voronoi cell is filled by 12 Z 12 vertices, 4 Z 14 vertices, and ( 1 + 28) Z 16 vertices ( 1 Z 16 vertex
in the centre and 28 Z16 vertex on the Voronoi cell vertices). In this case the matrix M is given by :

Table I. - Data corresponding to the P" polytopes. Np is the number of sites with coordination
number p and N the total number oj’sites. T is the number oj’tetrahedral cells. Z is the mean coor-
dination number.
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Since iteration begins with Po, the { 3, 3, 5 } polytope, one has X(O) = (120, 0, 0). To the largest
eigenvalue of M (the Perron root) corresponds an eigenvector which gives some information
about the asymptotic P~ polytope. In particular the mean coordination number (MCN) can be
easily derived and one sees in table I that the asymptotic value 40/3 is closely approached after
only very few iterations. By mapping a small part of the Pp (with large p) onto a tangent 3D
Euclidean space, it is possible to obtain a huge non-periodic model with an intricate defect
structure. Such a model is not as disordered as the usual computer generated hard-sphere models
and it is in many senses similar to the family of recurrent sets and Penrose-like tilings [11]. It
is possible to get a more disordered model by using more than one type of iterative transforma-
tion. We have already described a second such transformation [12] which also obeys the group G
symmetry operations and generates Z12, Z14 and Z18 vertices. By choosing randomly at each
iteration one of these two processes, one gets disordered models which still possess interlaced but
more complex defect structures. These models can again be labelled by words whose letters
belong to the two-letter alphabet associated with the two different types of transformation. Since
the asymptotic MCN value is 13.2 for this second process, it is then possible to obtain models with
a MCN intermediate between 13.2 and 13.333. Let us point out that even this more disordered
structure, although non-periodic, is probably still more regular than a real amorphous structure.
This iterative procedure is, however, a new and powerful method which allows one to discuss
the relation between short and intermediate-range order, and provides huge structural models
with hierarchical defect geometries. The geometrical proof that the asymptotic structure is non-
periodic is rather long and will not be given here. Let us restrict ourselves to a shorter illustration.
Suppose that, after p iterations, a crystal Pp is obtained. Its unit cell necessarily contains parts
of the disclination network Dp (whose periodicity is also required). Since the next iteration will
add a new disclination network (interlaced with those contained in Dp), the size of the Pp+ 1
unit cell is larger when scaled on the first neighbour distance. The Poo unit cell is thus infinite,
which proves its non-periodic character. Note that some trivial iterative procedures can produce
« crystalline » structures, such as, for instance, the derivation of B. Fuller geodesic domes which
are triangular lattices embedded on S2 via the introduction of 12 5-fold defects. In this case the
number of defects is finite while it is infinite in the non-crystalline P~ polytope described above.
Even more in the Fuller geodesic dome case the separation between defects increases at each
iteration, when scaled to the first neighbour distance.
Added Note. - The matrix formulation given here bears an interesting resemblance to the

transfer matrix approach of fractals [15].
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