Hall coefficient and conduction in a 2D percolation system

To cite this version:

HAL Id: jpa-00232356
https://hal.archives-ouvertes.fr/jpa-00232356
Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Hall coefficient and conduction in a 2D percolation system

A. Palevski, M. L. Rappaport, A. Kapitulnik, A. Fried and G. Deutscher

Department of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel

(Reçu le 7 décembre 1983, accepté le 21 février 1984)

Abstract. — Complementary measurements of the conductivity and the Hall coefficient in 2D semicontinuous thin films of Au have been performed. It is shown that the sheet conductance near the percolation threshold obeys a power law with the exponent $\mu = 1.25 \pm 0.05$. The Hall coefficient does not exhibit critical behaviour in the vicinity of the threshold.

Dilute metals have been widely studied in recent years, both theoretically and experimentally [1, 2]. In particular metal-insulator mixture films have been shown to be well described by percolation theory near their conduction threshold [2, 3]. For example the conductivity, σ, near that threshold obeys a power law of the type

$$\sigma \propto (p - p_c)^\mu, \quad p \geq p_c$$

with p being the metal fraction [3-6]. Measurements of the 2D to 3D crossover in the resistivity [6] have also confirmed that description.

Most measurements have been performed [3-6] in thin mixture films. Close enough to the percolation threshold a 2D behaviour is always observed since the percolation correlation length becomes large compared to the film thickness. Nevertheless, 2D percolation behaviour has never been studied in a pure 2D system with respect to transport properties. In recent papers, the existence of geometric percolation characteristics in semicontinuous thin films of Pb [7] and Au [8] films have been reported. We report here the first quantitative study of transport properties (conductivity and Hall effect) showing that the underlying geometry indeed affects the macroscopic transport properties of such films.

The Hall coefficient is complementary to conductivity, but depends on independent microscopic properties of the metal. It has been predicted by several authors that the macroscopic Hall coefficient will have a power law behaviour in the vicinity of the percolation threshold, in 3D the exponent being between 0.3-0.5 [9-10]. Such behaviour was observed in granular films of Al-Al$_2$O$_3$ [11]. In 2D, however, it was shown already several years ago [12] as well as more recently [9, 10] that no divergence should be observed, the Hall coefficient remaining that of the pure metal in the whole metallic range.

In this letter we show that equation (1) for 2D holds with $\mu = 1.25 \pm 0.05$ and that the Hall coefficient remains constant near p_c and is close to that of the pure metal.
Micrographs of our Au films in the vicinity of the percolation threshold (not shown) indicate the same morphology as that studied in references [7] and [8], i.e. that of a random percolation network. The measurements of the conductivity were performed in situ during the evaporation using a 4-wire voltage source of 10 mV [14]. The average thickness t was read from the analogue output of the quartz crystal thickness monitor. The values of σ and t were recorded by an on-line computer.

Figure 1 shows the variation of the sheet conductance G_0 with t. G_0 was obtained after correcting for contact series resistance ($\sim 1.5 \Omega$). For thicknesses smaller than $t_c = 22 \text{ Å}$ the film is discontinuous. Above t_c the log-log plot in figure 2 shows a power law variation of G as a function of $(t - t_c)$, with an exponent $\mu = 1.25 \pm 0.05$.

It is known [15, 16] that the conductivity of polycrystalline gold films of uniform thickness obeys perfectly the size effect law of Fuchs [17] in both limits of thicknesses, i.e. $K = \frac{t}{\ell_e} \gg 1$ and $K \ll 1$, where $\ell_e = 400 \text{ Å}$ is the mean free path for gold at room temperature, if diffuse reflection of the boundaries are assumed. The theoretical curve of the conductivity variation with thickness is shown in figure 1 by a solid line. Our results fit this curve for thicknesses greater than 50 Å. Hence beyond 50 Å the film is essentially uniform. This value of the thickness is roughly twice the value of t_c and since the value of the critical concentration in 2D is $p_c \approx 50 \%$, we conclude that in the range 22-50 Å the fraction of the covered area varies essentially linearly with t. In other words the proportionality $(p - p_c) \propto (t - t_c)$ is not just valid for small values of $(p - p_c)$ but holds over an extended range of concentration. This claim is admittedly based upon indirect evidence. It could in principle be checked on films removed from the vacuum system, but the instability problems of

![Fig. 1. — Thickness dependence of the sheet conductance. Fuchs curve has been calculated with $\ell_e = 400 \text{ Å}$.](image-url)
thin gold films discussed below would probably render such a check very problematic. We note that our conductivity measurements also imply that films with $t \lesssim 50$ Å are in fact composed of grains or clusters of grains with a fairly uniform physical thickness $t \approx 50$ Å.

This description is consistent with resistivity ratio measurements on Hall effect samples, which give a value independent of t, even near t_e (Table I). However, the value of t_e is about 50 % larger than for in situ measured films. A still higher value of t_e ($\gtrsim 60$ Å) is reported in reference [8]. t_e values are known to vary significantly depending on details of samples preparation. We note that in situ samples were deposited on glass, and Hall effect samples on glass covered with SiO.

Table I.

<table>
<thead>
<tr>
<th>\bar{t} (Å)</th>
<th>R_Θ (Ω at 300 K)</th>
<th>R_Θ (Ω at 4.2 K)</th>
<th>$\frac{V(H)}{i.H} \times 10^{-2}$ (C/m⁴)</th>
<th>$R_{H2D} \times 10^{11}$ (C/m³)</th>
<th>$R_{H3D} \times 10^{11}$ (C/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>775</td>
<td>600</td>
<td>2</td>
<td>10</td>
<td>7.2</td>
</tr>
<tr>
<td>41</td>
<td>155</td>
<td>140</td>
<td>1.9</td>
<td>9.5</td>
<td>7.8</td>
</tr>
<tr>
<td>67</td>
<td>29</td>
<td>25</td>
<td>1.4</td>
<td>9.6</td>
<td>9.6</td>
</tr>
<tr>
<td>81</td>
<td>11</td>
<td>8.5</td>
<td>1.1</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>100</td>
<td>9</td>
<td>7</td>
<td>0.65</td>
<td>6.5</td>
<td>6.5</td>
</tr>
</tbody>
</table>
Furthermore, measurements on our Hall effect samples and those of reference [8] were performed after removal from the vacuum system. This is probably the main reason for the higher values of $\overline{\rho}_c$ and p_c ($p_c \approx 74\%$ from Ref. [8]) of these films, compared to those measured in situ: gold films are known to be fairly unstable, room temperature annealing leading to partial agglomeration [18]. The dispersion in the conductivity values of our Hall effect samples (Fig. 1) is probably also related to the films instability. It appears that only in situ conductivity measurements are appropriate for a precise determination of critical indices in gold films.

The Hall effect samples were prepared with a special arrangement of contacts [13] by evaporation of Au from a boat unto a microscopic slide at room temperature. Before deposition the slide was covered with a positive photoresist to allow lift-off photolithography. A 400 Å SiO film provided the support for the Au film after dissolving the photoresist in acetone for TEM observation. Films with $t \geq 70$ Å were found to be essentially uniform. In a pure 2D system the Hall coefficient should not depend on t (the average thickness) if, as we have argued, the thickness t of covered areas (physical thickness) remains constant for all concentrations $p < 1$. The quantity that should remain constant near p_c is therefore $V(H)/IH$. This is actually what is observed (Table I) for the 2 thinner samples. We define:

$$R_{\text{H2D}} = \frac{V(H) t}{I.H}.$$ (2)

For thicker samples for 3D formula $R_H = V(H) \overline{t}/IH$ should be applied.

In order to compare Hall coefficients for the whole range of thicknesses, we used equation (2) with $t = 50$ Å for the first two samples and 3D formula for the three thicker ones. The Hall coefficient shows a very moderate increase near p_c. The two thicker samples which are considered uniform should have the bulk value of the Hall coefficient which is $R_{\text{Au}} = 7.2 \times 10^{-11}$ [C/m²] in reasonable agreement with the data. The Hall coefficient was found to be independent of the applied magnetic field up to 1.3 T and of the current density up to 1×10^3 A/cm². The measurements were performed at 300 K, 77 K and 4.2 K. The Hall coefficient in this range of temperature remained unchanged, while as noted above the resistance decreased at low temperature.

In conclusion, the conductivity of semi-continuous Au films near the percolation threshold shows a power law behaviour with a conductivity index $\mu = 1.25 \pm 0.05$ in excellent agreement with the latest transfer matrix computation ($\mu = 1.28 \pm 0.03$) for 2D systems [19]. The Hall constant remains near the threshold very close to the bulk value, also in agreement with theoretical predictions.

Acknowledgments.

We wish to thank Y. Kantor and D. Bergman for helpful discussions.

We acknowledge support of the Oren Family Chair for Experimental Solid State Physics and of the US-Israel Binational Science Foundation.

References

TRANSPORT IN A 2D PERCOLATING SYSTEM