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Résumé. 2014 Nous calculons la fonction de corrélation nue  Q03B103B2p Q03B103B2-p&#x3E; pour les verres de spin à
courte portée, autour de la solution de champ moyen de Parisi, en champ près de Tc. Nous évaluons
la corrélation associée à un recouvrement donné x (des répliques 03B1, 03B2) et la moyenne sur x i.e. la
transformée de Fourier de la corrélation de spins 03C3i03C3j&#x3E;2 (p conjugué de |i - j|). En champ le
comportement infrarouge dominant est en p-3 dans tous les cas. En champ nul il est en p-4, p-3,
p-3 ln p respectivement pour x ~ p, p ~ x et la moyenne de mécanique statistique, en accord pour
le premier cas avec le résultat dynamique (x = 0) de Sompolinsky Zippelius.

Abstract. 2014 We compute the bare correlation function  Q03B103B2p Q03B103B2-p&#x3E; for the short range spin glass,
around Parisi mean field solution, in field near Tc. We evaluate both the correlation function asso-
ciated with a given overlap x (of replicas 03B1, 03B2) and the x-average i.e. the Fourier transform of the spin
correlation  03C3i 03C3j &#x3E;2, (p conjugate to |i - j|). In field the dominant infrared behaviour is in p-3
in all cases. In zero field it is in p- 4, p- 3, p-3 In p respectively for x ~ p, p ~ x and the statistical
mechanics average, agreeing in the first instance with the dynamic (x = 0) result of Sompolinsky
Zippelius.
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The present state of affairs in the field of spin glasses is to say the least, paradoxical. On the one
hand some experimentalists (and theoreticians) continue to think of physical spin glasses in terms
of phase transitions leaving for future developments to vindicate them. On the other hand a
consensus seems to be nearing for most theoreticians and number of experimentalists on a lower
critical dimension dL = 4 excluding the spin glass transition from the realm of nature and rejecting
it to zero temperature while shifting spin glasses to the domain of dynamical effects [1, 2]. Indeed
fragmentary results from various directions have long pointed towards = 4 : high temperature
expansion [3], analytic work on replica broken solutions [4], numerical simulations [5, 2]. More
recently Sompolinsky and Zippelius [6] have obtained from dynamics the asymptotic behaviour
of the bare fluctuation correlation in zero field conforting this trend.

This situation has motivated us to study (free) fluctuation correlations (i.e. beyond mean field
approximation) in particular in the presence of a field. We have obtained in the Parisi approxima-
tion (near TJ the « first » propagator [4, 7] (i.e. involving only two distinct replicas) in exact form.
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For clarity we first present results on its infrared (IR) and ultra violet (UV) behaviour and com-
pare (in zero field) with the dynamical results of Sompolinsky and Zippelius [5]. We then discuss
the spectrum and the fate of zero modes. The second propagator (involving three distinct replicas)
can be generated with the same methods.

1. Mean field.

The model used is the short-range Ising spin glass whose Hamiltonian [8] is 2013 ~ J jl (1 j ~f E hu j.
The probability law Pjl for the bonds Jjl is a Gaussian with half width J2/Z, z the number of
(interacting) neighbours (Z 1 ~d grows like the range of the interaction). When z becomes infinite
like N one recovers the Sherrington Kirkpatrick [9] model and mean field theory for which one has
to distinguish (i) statistical mechanics and (ii) (long time) dynamical quantities. In statistical
mechanics observables are computed with Parisi [10] solution (or equivalently with the ansatz
proposed by Sompolinsky [11] and derived elsewhere [12]). This leads to averages over the whole
replica space [13] and e.g. the standard spin glass order parameter q is then

where the bar stands for bond averaging and q(x), x E (0, 1) is the Parisi order parameter function.
In dynamics observables are time averages are long time behaviour is dominated by the longest
relaxation time To leading, as shown by Sompolinsky, to

for the same order parameter. A tentative explanation for this difference can be found in Houghton
Jain and Young [14].

2 Fluctuations and summary of results.

To fix ideas we propose to compute the correlation Cij =-  (Ji Gj )2 (or rather its Fourier trans-
form). To keep algebra tractable we use Parisi model (quartic in the field variables QjfJ) which is
very good near T~. Mean field is obtained by saddle point as

To go beyong mean field one writes (in Fourier transform, p wavevector in units of the inverse
range)

and keep terms quadratic in R. Free fluctuations are governed by the field Lagrangian

where qa~ is given by Parisi self similar solution.
The Fourier transformed correlation in statistical mechanics is then
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and Gp is computed with L(O) as in (5). Note that we have

where are eigenvalues of the quadratic form in (5) and Jla the corresponding multiplicities. These
eigenvalues come out in two families [4, 7, 15] (i) the replicon one (R) that produced negative
masses in the early days of the theory and (ii) the longitudinal-anomalous one (LA) whose L piece
is studied in exact form by Thouless et al. [16] (the whole exact spectrum is given elsewhere [17,18]).
Each family has its counterpart Gp , G p A. One also defines a correlation for a given overlap x (or
codistance) between replicas a and ~3, then instead of (6) one has

whose integral over x gives the corresponding averaged correlations G~, Gp A. Our results are the
following. For the UV behaviour (large p) one finds G R ~ p - 2 G LA ,~ p ~ 4. More interesting is the
IR behaviour since it enters in determining dL. We have singled out from closed expressions, the
behaviour of Gp(x) for the regions x  p and x &#x3E; p, and always p  1. This is summarized qua-
litatively by an interpolating form valid for all x except near and above x l (x l ~ 2 ’t is the border
of the upper flat zone in q(x)) where all Gp’s behave like p- 2.
~ In zero field : For the R family we find

where the limit x = 0 agrees with Sompolinsky Zippelius [6]. For the LA family we have

showing that G p "(x) dominates the statistical average as p -~ 0 for fixed x.
The respective averages contributing to Cp become

. In field : We find that Gp(x, h) for x &#x3E; xo (xo ~ h2~3 is the border of the lower flat zone of
q(x)) has the same qualitative behaviour as in zero field as given in (11), (12), i.e.

The R family would leave Parisi’s order prevail in physical space (G: ’" (/?x) ~) but the IR
behaviour is dominated again by G LA ’" xp-3. Below xo, the correlation remains frozen at the
value Gp(xo, h). For the averages we find

The effect of interactions will make Gp more singular (if the critical exponent r~ is negative [19,
20]) thus ( 11 )-( 15) tell us that d = 3 is a lower bound for dL. When x is fixed at zero, as in long
time averages, the lower bound is raised to d = 4 in zero field. This is relevant to couplings in Jj,
or Jj’/I rj - r~ ~ 3 (that lead to an effective ~ r~ 2013 ~ )’~potential). Note that a coupling J~/~ ~ 2013 ~ ~
leads to replace everywhere in (11)-(15),~ by p (,z/2) and leaves room for a Parisi order in d = 3.
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3. Spectrum.

The R spectrum is given by

with k = k/(R + 1 ), p = r/(R + 1 ) where k 1 k2 r are three quantum numbers taking discrete
values (r  k1 ~ k2) between 1 and R + 1 and R the number of iterations in the Parisi block
ansatz (no confusion with the replicon symbol !). The LA spectrum involves only one quantum
number k, and for each k contains R + 1 modes which we label b = 1, 2, ..., R + 1.
To understand what is going on, it is essential not to take the R -~ oo limit too early. For simpli-

city we first discuss the L (or T.A.K. [16]) component (i.e. k = 0) the eigenvalue equation of which
leads to an oscillator equation. Discrete Fourier analysis of it yields a dispersion relation between
the eigenvalues ÀL and a wavevector u (- n(R + 1)/2  u  n(R + 1 ))

and u is quantized by cotg ux ==M(1 2013xj. Thus we get (i) the T.A.K. spectrum for the values of u
(or the index b) remaining finite as R -~ oo and (ii) A’ - 0( 1 /R 2) for those becoming infinite with R
(i.e. the T.A.K. spectrum has zero measure, the zero modes constituting almost all the spectrum).
Note that the T.A.K. contribution to Gp i.e. 2[n(n - 1)]-’ y (p 2 + ~,6)-1 diverges as R -~ o0
(and n -+- 0). b

Likewise the A spectrum (k # 0) is respectively given (i) by ~,b (k) ~ 0(ljR2) when b &#x3E; k

and k inhnite with R, (ii) by q2(x) - q2(X) with x == b/(R + 1) when b  k and b is infinite with R
and finally (iii) by the non trivial spectrum described in I equations (1), (8) when b remains finite
as R -+ oo (tending towards q 2(K) - q2(o), when b, or the index m of I, becomes infinite in turn).

4. Multiplicities and the fate of zero modes.

Multiplicities are best obtained by direct counting of the number of linear relationships between
the eigenvectors. Once they are known they can be retrieved by setting onto its feet the direct
integration over the field variables Ra~ of exp L~ attempted by Goltsev [21, 22]. Without prior
knowledge of them the direct integration is hopelessly difficult. For the LA family one gets

where mk is the number of replicas in each one of the mk - /mk blocks k appearing at the kth inter-
mediate step of the R-iterated Parisi ansatz (mo =- n -+ 0, mR + 1 == 1; mk --+ K, mk - mk- 1 -+ dK
as R -+ oo). Again the contribution to Gp for a given k is disturbing since it blows up as R -~ oo
(but is now regular for n -+ 0).

Fortunately this is mended by the R family whose multiplicity ~ = /~, k1, kz) is the sum of a
regular and a singular part. The regular part immediately gives for the G p R contribution to (8)
(after n -+ 0 and R -+ oo)

The field h only enters via the order parameter q. Besides, for a given overlap G~ (x) is given by
setting p = x (and no p integration) in (19) (with a simple factorized form in a « time » represen-
tation).
The singular part of JlR only exist for k1 = r + 1. If k2 --- k &#x3E; r + 1 it is equal and opposite to

JLLA(k) as in (18) (its associated denominator being p2 + q2(K) - q2( p)). If k = r + 1, it is equal
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r+ 1

to 2013 ~ JlLA(t) (its associated denominator being p2 + 0(1/~~)). This singular part when
t=O

combined to G LA thus removes the R -+ oo divergence to give (after a partial integration over k)

now convergent. Note that S(K) is a constant on the flat sectors of q(K), and the integration only
extends between xo and xl. So the all pervasive zero modes have now disappeared from GLA
(except from the lower edge of the integration band). Although (20), (21) give the answer for G;A
they are difficult to use given the complicated implicit equations I (7), (8) defining /).~(K), neither
they provide any clue for Gp A(x). We sketch below how to overcome these difficulties.

5. An explicit form for GLA.

The (R + 1) eigenvalues ALA (k) for a given k are given by the zeroes of the determinant read off the
eigenvalue equations I (5), (6) discretized which we write Ak fl Xb(k). Here Xb(k) is ~(b, b, k)

b

for b  k and ~(b, b, b) for k  b as introduced above. Then one has

To determine Gp LA (x) one introduces S(K ; x) obtained by functional derivative

(recall k = K(R + 1), b = x(R + 1 )) together with, as in (20)

The evaluation of (23) is easily done by noticing that

with 0 satisfying e.g. in the simpler k = 0 case

Here for we have cp+ = q(x) and (0, x) boundaries, for 4&#x3E;-, ~p - =1 and (x, 1 ) [note that
4&#x3E;0+ = q(xo) for x  xo, ~o - 1 for x &#x3E; xl (alsoinzerofield4&#x3E;o-(X = 0) = do)~. Equations (24),
(26) yield G~(x), and G;A by x integration or with (20), (22). The explicit expressions obtained
would take too much space to quote. The same methods (functional derivative in qb - qb + 1)
generate the « second » propagator [4, 7] involving three distinct replicas.
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