Observation of the uranium 235 nuclear magnetic resonance signal
H. Le Bail, C. Chachaty, P. Rigny, R. Bougon

To cite this version:

HAL Id: jpa-00232291
https://hal.archives-ouvertes.fr/jpa-00232291
Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Observation of the uranium 235 nuclear magnetic resonance signal (*)

H. Le Bail, C. Chachaty, P. Rigny and R. Bougon

Département de Physico-Chimie, CEN de Saclay, 91191 Gif-sur-Yvette Cedex, France

(Reçu le 26 septembre 1983, accepté le 20 octobre 1983)

Résumé. — La première observation du signal de résonance magnétique nucléaire de l'isotope 235 de l'uranium est présentée. Elle a été effectuée sur l'hexafluorure d'uranium pur, à l'état liquide à 380 K. Le rapport gyromagnétique mesuré est égal à $|\gamma(^{235}\text{U})| = 492.6 \pm 0.2 \text{ rad.s}^{-1} \text{ G}^{-1}$.

Abstract. — The first observation of the nuclear magnetic resonance of the uranium 235 is reported. It has been performed on pure liquid uranium hexafluoride at 380 K. The measured magnetogyracic ratio is $|\gamma(^{235}\text{U})| = 492.6 \pm 0.2 \text{ rad.s}^{-1} \text{ G}^{-1}$.

The uranium 235 magnetic moment μ_N has previously been estimated only by indirect methods, the paramagnetic resonance of the U$^{3+}$ ion inserted in a lanthanum chloride matrix [1, 2] and the optical absorption of the ^{235}U atom [2]. Both these methods indicate unambiguously that the nuclear spin is $I = 7/2$, but they only provide the magnetic moment value through delicate assumptions about quantities like $\langle r^{-3} \rangle$, where r is the electron spin to nuclear spin distance, the brackets corresponding to a quantum average of the relevant wave functions. The values of $|\mu_N|$ deduced thereof are found between 0.31 and 0.35 β_N, β_N being the nuclear magneton. These values, among the smallest of the periodic table, correspond to a magnetogyractic ratio of 424 to 479 rad. s$^{-1}$ G$^{-1}$. The nuclear resonance frequency calculated from these values is between 1.58 % and 1.79 % that of the proton in the same magnetic field. On the other hand, the quadrupole moment of uranium 235 is very large, being estimated to 4.1 barns [1] or 6.4 barns [2]. Under these conditions, a very low sensitivity of detection is expected, explaining possibly why the NMR observation of this nucleus has not been reported before.

We report here the first NMR observation of ^{235}U. The uranium hexafluoride has been chosen for these experiments because the quadrupole effects are minimized by its cubic symmetry in the liquid state. Pure liquid UF$_6$, 93.5 % enriched in ^{235}U, has been studied at 380 K, in a 10 mm o.d., 6 mm i.d. sealed silica tube. At this temperature, the UF$_6$ vapour pressure is ca. 4 bars.

The NMR spectra were recorded on a BRUKER WM 500 spectrometer with an external field of 11.747 T. The rf. power corresponds to a $\Pi/2$ pulse of 90 μs. On the figure are compared the absorption spectra of UF$_6$ 93.5 % enriched in ^{235}U (A), of UF$_6$ with a natural abundance of 0.72 % in this isotope (B) and an off resonance blank recording (C).

(*) La version française de cet article a été proposée aux Comptes Rendus de l'Académie des Sciences.
The measured resonance frequency of 235U is $v = 9.209 \pm 0.004$ MHz, corresponding therefore to a magnetogyric ratio:

$$|\gamma^{(235\text{U})}| = (0.018 414 \pm 0.000 01) \gamma_H = 492.6 \pm 0.2 \text{ rad. s}^{-1} \text{ G}^{-1},$$

γ_H being the proton magnetogyric ratio in tetramethyilsilane (26 751 rad. s$^{-1}$ G$^{-1}$). The nuclear moment given by the expression $|\mu_N| = |\gamma^{(235\text{U})}| \hbar f$ is thus equal to $0.359 99 \pm 0.000 15$ nuclear magnetons, with likely a negative sign according to reference 3. The μ_N value determined here is therefore very close to the largest one given in reference 2. Dorain et al. [2] indicate however that their estimate of $<r^{-3}>$ is quite inaccurate being uncertain by a factor 2. Moreover, the electronic structures of the investigated species (U^{3+}, U and UF$_6$) are very different so that chemical effects of a few per cent may be expected for the corresponding effective nuclear magnetic moments.
The accuracy in our determination of μ_N is limited by two factors: a marked distortion of the base line by acoustic ringing [6] and a half height line width of 20 kHz of the 235U signal.

In several articles, Ursu et al. [7-9] carried on an indirect study of the nuclear magnetism of 235U through the relaxation of 19F spins in UF$_6$. These studies showed a dependence of the 19F relaxation properties upon the isotopic composition of uranium, which was assigned to the relaxation of 235U. Although the large value of the 235U line width measured here is an evidence of an efficient quadrupolar relaxation mechanism induced by molecular vibrations, a quantitative comparison seems premature without complementary experiments. Among them an improvement of experimental conditions of observation of the 235U signal (rf power, pulse sequences) is needed. They might allow, in particular, a practical method for determining the uranium isotope composition, the most abundant one, 238U, being devoided of nuclear spin.

References