Multiphoton transitions in gases at microwave frequencies
G. Alzetta, A. Battaglia

To cite this version:

HAL Id: jpa-00232259
https://hal.archives-ouvertes.fr/jpa-00232259
Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Multiphoton transitions in gases at microwave frequencies

G. Alzetta and A. Battaglia

Dipartimento di Fisica dell'Università Pisa, Italy

(Reçu le 13 juin 1983, révisé le 22 juillet, accepté le 28 juillet 1983)

Résumé. — Nous avons engendré des transitions à plusieurs photons en irradiant un gaz avec deux sources de radiation microonde. On a ainsi étudié des transitions à trois photons dans l'ammoniac et le soufre de carbone en fonction de la fréquence, de la puissance rayonnée et de la densité des gaz. Nos résultats sont en assez bon accord avec les prédictions théoriques.

Abstract. — Multiphoton transitions are produced irradiating a gas by two microwave power sources. Three-photon transitions in NH₃ and OCS have been studied in function of frequencies, power and density of gases. Measurements agree fairly well with theoretical predictions.

Three-photon transitions in the optical region have been observed and related by some authors [1].

We describe a similar experiment that has been realized in the region of microwaves at centimetre wavelength in gases at few μHg of pressure.

The gas in a waveguide cell was irradiated by two strong waves at frequencies ν₁ and ν₂, both very close either to the resonance frequency ν₀ of the (3,3) absorption line of inversion spectrum of NH₃ or to that of the line J = 1 → 2 of pure rotational spectrum of carbonyl sulfide OCS. The frequency ν₁ is fixed at a distance Δν from ν₀, the second wave is swept in frequency between ν₀ and ν₁. The frequency interval Δν is several linewidth wide, and ν₁ < or > ν₀.

A schematic mechanism of three-photon transitions is shown in figure 1a and b. In the case ν₁ < ν₀ (Fig. 1a), the virtual levels are traced at a distance Δν from real levels connected by the transition at ν₀ frequency. The process occurs when

\[2 \nu_1 - \nu_2 = \nu_0. \]

Two photons are absorbed from the wave ν₁ and one is emitted at the frequency ν₂. In the second case (Fig. 1b) the process is the same but the virtual levels are outside the real ones. The absorption and emission coefficients γ₁ and γ₂ have been calculated by means of the complex operator of Liouville [2]. The expansion parameters are of the kind

\[| E \mu/(ω_0 - ω_1) | \]

which are supposed to be < 1, and in the hypothesis

\[| 2 \omega_1 - \omega_2 - \omega_0 | \ll | \omega_1 - \omega_0 | \]

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyslet:019830044018075500
we have for the first case:

\[
\gamma_1 = - \frac{8 \pi \omega_1 NF^2}{CE_1^2} \frac{1/T_2}{(\omega_r - \omega_0 + S)^2 + 2 F^2 \frac{T_1}{T_2} + \frac{1}{T_2}} \frac{\omega_0 - \omega_2}{\omega_0 - \omega_1};
\]

\[
\gamma_2 = \frac{8 \pi \omega_2 NF^2}{CE_2^2} \frac{1/T_2}{(\omega_r - \omega_0 + S)^2 + 2 F^2 \frac{T_1}{T_2} + \frac{1}{T_2}}
\]

\[
F = \mu^3 \frac{E_1^2 E_2}{(\omega_0 - \omega_1)(\omega_1 - \omega_2)}; \quad S = - \mu^2 \frac{2 E_1^2 + E_2^2}{\omega_1 - \omega_2}
\]

with

- \(T_1 \): longitudinal relaxation time,
- \(T_2 \): transversal relaxation time (for ammonia we assume \(T_1 \approx T_2 \)),
- \(E_1, E_2 \): electric fields of \(\nu_1 \) and \(\nu_2 \) waves,
- \(\mu \): electric dipole moment of transition,
- \(N \): molecular density,
- \(S \): radiation shift,

and where \(\omega_r = 2 \omega_1 - \omega_2 \).

With appropriate approximations it is possible to deduce for the multiphoton an absorption of power of the kind [3]:

\[
\Delta P = P_1 P_2^2
\]

and

\[
\Delta P = (\omega_0 - \omega_1)^{-4}
\]

and a dependence from the pressure equal to that of the one-photon line.

Figure 2 schematizes the spectrometer that we have set up to work in the K-band (24 GHz).
Two klystrons \(K_1 \) and \(K_2 \) are used as microwave generators (EM 1188) with 1 W of maximum power output. \(K_1 \) is stabilized in frequency through a tunable cavity \(C_1 \) with a very small frequency modulation at 5 kHz. The wave \(\nu_2 \) is frequency modulated with the sawtooth of the oscilloscope. The waves \(\nu_1 \) and \(\nu_2 \) feed a Stark absorption cell, 50 cm length, through two decoupled arms of a magic T. The power of the two waves in the cell can be controlled and measured by means of two
calibrated absorbers A_1 and A_2. The signals are detected by the crystal X_2 in one of the H arms of a magic T, or by the crystal X_1 in the other H arm; in this case the signal is filtered by a tunable cavity C_2.

These crystals are protected and insulated by means of a calibrated absorber A_3 and an uniline U_3. The low-frequency signals are amplified by a lock-in and monitored on a scope.

The signals are optimized, when necessary, with the time-averaging technique and successively recorded. Since the two photons absorbed and the one emitted are of different frequency, the observation in X_2 evidences a net absorption while the detection in X_1 with the opportune tuning to v_1 or v_2 frequency of the cavity C_2 reveals the emission or the absorption (Fig. 3).

With A_1 and A_2 completely open (maximum power in the cell) a signal is detected in X_2 showing transitions at 1, 3 and 5 photons (Fig. 4).

The intensities of the three-photon transitions have been measured as a function of the power P_1 and P_2. These measurements agree fairly well with (1) since it has been found a proportionality to

$$p_1^{0.96} \cdot p_2^{2.06}.$$

Fig. 3. — Emission (a) observed with the cavity C_2 tuned to the frequency v_1, and absorption (b) with the same cavity tuned to v_1 i.e. the spectrometer is operating in the conditions reported in figure 1a.
Fig. 4. — A typical diagram showing absorption of one, three and five photons in NH₃.

Fig. 5. — Three-photon line intensity as a function of the distance from the main (3,3) NH₃ absorption line.
At several values of P_1 and P_2 the intensity of three-photon line was measured point by point as a function of the frequency v_1, that is
\[\Delta v = v_0 - v_1 \]
and it was found a dependence of the kind
\[\Delta P = \Delta v^{-4.2} \]
instead of a fourth-power behaviour (Fig. 5). The measurement reveals a dependence from the pressure of the linewidth which is the same and has the same value as that of the one-photon line.

In ammonia the effect is much stronger than in carbonyl sulphide and the measurements easier, but a good source of errors in the case of NH$_3$ is the instability of the pressure in the cell.

It is worthwhile to underline that amplification of a wave takes place, so that a tunable MASER can be conceived to work in the nearness of a microwave absorption line.

Acknowledgments.

We wish to acknowledge the assistance of F. Sbrana and G. Villa for their help in performing the experiments.

References