Experimental observation of the intercollisional interference effect on the S1 pure rotation line of the collision induced spectra of the H2-He mixture

G. Bachet

To cite this version:

G. Bachet. Experimental observation of the intercollisional interference effect on the S1 pure rotation line of the collision induced spectra of the H2-He mixture. Journal de Physique Lettres, 1983, 44 (5), pp.183-187. <10.1051/jphyslet:01983004405018300>. <jpa-00232178>

HAL Id: jpa-00232178
https://hal.archives-ouvertes.fr/jpa-00232178
Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Experimental observation of the intercollisional interference effect on the S_1 pure rotation line of the collision induced spectra of the H_2-He mixture (*)

G. Bachet

Laboratoire des Interactions Atomiques et Moléculaires,
Faculté des Sciences et Techniques de St-Jérôme, 13397 Marseille Cedex 13, France

(Reçu le 29 novembre 1982, accepté le 5 janvier 1983)

Résumé. — On présente les coefficients d’absorption du spectre correspondant à l’interaction H_2-He à 300 K entre 200 et 700 cm$^{-1}$. Un défaut d’absorption ou « dip » caractéristique des effets d’interférences collisionnelles est clairement visible à la fréquence de la raie rotationnelle S_1 de la molécule libre H_2.

Abstract. — The absorption coefficients of the collision induced spectrum of the interaction H_2-He at 300 K between 200 and 700 cm$^{-1}$ are presented. A lack of absorption (dip) due to the intercollisional interference effect is clearly seen at the frequency of the pure rotation line S_1 of the free molecule of H_2.

The collisional induced spectra of H_2 and He-H_2 mixture have been the object of many experimental investigations [1-10] because they enable the collisional mechanisms to be studied: double transitions, overlaps, intercollisional interference effects; and also because they can be used to determine the composition of some planetary atmospheres.

Most of these investigations have been performed in the near infrared at about 4 500 cm$^{-1}$ on the vibration rotational spectra of the H_2 molecule. These investigations have shown the intercollisional interference effects which are dips around the rotational-vibrational frequency of the absorber. The theoretical explanation of these phenomena has been given by Van Kranendonk [11]; they are due to the fact that an effect of a collision is partly destroyed by the next one.

Up to now, the far infrared investigations [5, 7, 10] have been realized at too low resolutions (≈ 10 cm$^{-1}$) to evidence the dips on the pure rotation spectra and the absorption coefficients of the H_2-He spectra derived from them are too inaccurate for the reconstitution of the planetary atmosphere spectra.

Moreover, the Jovian atmosphere spectra taken by Voyager I presents yet unexplained features [12] at 354 and 587 cm$^{-1}$ (transition frequencies of the free rotation of H_2^-: lines S_0 and S_1).

Considering these facts, we have begun a study of the H_2-He mixture spectra in the far infrared (200-700 cm$^{-1}$) with a higher resolution so as to obtain a better accuracy in the absorption

(*) La version française de cet article a été proposée aux Comptes Rendus de l’Académie des Sciences.
coefficients and to show, in this spectral region, the lack of absorption due to the interferences between the different collisions which may explain the features of the Voyager I spectra.

1. Experimental procedure. — To obtain the absorption coefficient α_{12} for the H_2-He interaction alone, the contribution of the interaction H_2-H_2 must be subtracted from the α_m coefficient of the mixture experimentally determined by:

$$\alpha_m(v) = \frac{1}{Ld^2} \ln \frac{I_0(v)}{I_m(v)},$$

where

- v is the frequency
- L, the length of the absorption path
- d, the density of the mixture
- I_m, the intensity reaching the detector, the cell filled up with the mixture
- I_0, the intensity reaching the detector, the cell empty.

For this subtraction, the α_{11} coefficients of the self-induced spectra of H_2 (experimental data) are used in the formula:

$$\alpha_{12} = \frac{\alpha_m - \chi^2 \alpha_{11}}{\chi(1-\chi)},$$

with $\chi = \text{density of } \text{H}_2 / \text{density of the mixture}$.

In some parts of the spectra, especially around the S_0 and S_1 lines, α_m and $\chi^2 \alpha_{11}$ are very close together so that any inaccuracy in their determination leads to a great inaccuracy in α_{12}.

In order to obtain a better accuracy of the data, we have not used the α_{11} coefficients but we have replaced the reference spectra (empty cell) by that of the cell filled with hydrogen at the same pressure as the partial pressure of this constituent in the mixture. In these conditions:

$$\alpha_{12} = \frac{1}{d^2 L(1-\chi) \chi} \ln \frac{I_{\text{H}_2}}{I_m}.$$

Thus the noises and errors from two more reference spectra are avoided. The density of the mixture and χ can be chosen so that $I_m \in [0.2 I_{\text{H}_2}, 0.6 I_{\text{He}}]$ in order to obtain the best accuracy on α_{12} [7].

— A three meter long pressure cell made of stainless steel has been added. This cell has a vacuum insulated cryostat. The inner surface of the pressure cell is lined with an aluminium pipe which conducts light. The windows are ICs crystals (12 mm thick; free diameter : 10 mm). They are glued on their mounts which are themselves tightened on the body cell with indium gaskets.

A relatively fast scan of the interferogram has been adopted. It avoids the use of a mechanical chopper which always causes noise. This method provides the opportunity of taking several interferograms in a short time and of calculating a statistical average, thus improving the accuracy of the results. The speed of the scan has been chosen experimentally so as to obtain the best response of the detector at the top of the interferogram.

A micro computer (Zylog) has been connected with the instrument and controls it. Its numerous functions include the following:

1) Each time a fringe travels in the helium-neon laser interferometer which supervises the moving mirror, a sample is taken and put into a memory field looped on itself.
2) The nearest fringe of the zero path difference is identified by locating the maximum of the interferogram.

3) From this fringe, a sample is taken every step, \(h \); this step, imposed by the optic (beam splitter, filter, source), is measured by counting the corresponding number of fringes.

4) When the necessary amount of samples is reached, the samples, corresponding to the series whose elements are spaced from one another by the step \(h \) and which begins at the maximum of the interferogram, are extracted from the memory field. In this way the two-sided interferogram is rebuilt.

The four operations are repeated \(n \) times so as to obtain two sums of \(n/2 \) interferograms each one corresponding to a travelling direction of the moving mirror.

The two lots of data are constituted both for the sample (H\(_2\)-He) and for the reference (H\(_2\)). A fast Fourier transform (Delouis algorithm [14] for a complex function) is effected on each lot of data; the absorption coefficients are computed and only after this step, the average of the results, corresponding to both directions of the movement of the mirror, is taken.

All the results (interferograms, spectra after fast Fourier transform, absorption coefficients) can be reproduced on a XY analogic plotter. For purposes of rapidity all the computer programs involved have been written in Z 80 assembly language.

3. **Experimental conditions.** — All the gases and mixtures used (15.6 % of H\(_2\)) are Air Gas ultra high purity grade (6.0). To remove the residual H\(_2\)O the gases pass through molecular sieves (Union Carbide type 13X) previously heated at 600 K and cooled at 77 K just during the flowing.

4. **Results.** — The normalized absorption coefficients \(\alpha_{12}/d^2 \), in absolute units, for the H\(_2\)-He interaction at 300 K are shown in figure 1 (average of 40 interferograms for the sample and for the reference). The results are smoothed using a least square procedure (four degrees polynomial on nine points [15]).

![Absorption coefficient of the H\(_2\)-He interaction spectrum.](image)

A lack of absorption is clearly seen at 587 cm\(^{-1}\). The enlargement of this dip is shown in figure 2. Its amplitude represents 6 % of the S\(_1\) line; its half line width at half height is 10 cm\(^{-1}\) (density of the mixture: 109 Amagats). So this phenomenon is rather small and it does not seem possible to put it forward to explain the Jovian spectra features for the following reasons:

- the Jovian atmosphere is 90 % H\(_2\)-10 % He;
- the Voyager Spectra have been taken in the upper atmospheric layers where the total
pressure is about 200 mbar; therefore the dip should have a half width of 0.01 cm⁻¹ since the dip width is proportional to the density of the mixture whereas the absorption coefficients are proportional to the square density;

— the resolution of the Voyager interferometer was 3.5 cm⁻¹: the shape of the dip is convoluted by an instrument response function one hundred times wider.

As the features shown are too big to be due to the interference effects between successive collisions H₂-He, their origin may be associated with the pure rotation spectra of H₂.

Our record of this spectra (cell of 5 cm, pressure of 150 bars, 300 K) does not show an effect as marked as in H₂-He spectra. There seems to exist a small depression (1 %) at about 580 cm⁻¹ but it is not clear enough to be considered as an experimental proof of the reality of a dip.

In figure 1, a « dip » is not observed at the position of the S_0 line, probably because of the weakness of this line comparatively with the S_1 line, at room temperature.

5. Conclusion. — For the first time, at 587 cm⁻¹, transition frequency of the pure rotation of H₂, a dip is shown which is due to the interference effect between the successive collisions of H₂ and He. But its low amplitude suggests that it cannot explain the feature observed at the same frequency on the Voyager’s Jovian spectra. A search for the relationship between spectral parameters and temperature is now in progress.

References

