Novel biaxial bilayered fluid mesophases

F. Hardouin, Nguyen Huu Tinh, A.M. Levelut

To cite this version:

HAL Id: jpa-00232125
https://hal.archives-ouvertes.fr/jpa-00232125
Submitted on 1 Jan 1982

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Novel biaxial bilayered fluid mesophases

F. Hardouin, Nguyen Huu Tinh
Centre de Recherche Paul Pascal, Université de Bordeaux I,
Domaine Universitaire, 33405 Talence Cedex, France

and A. M. Levelut
Laboratoire de Physique des Solides (*), Université de Paris-Sud, Bât. 510, 91405 Orsay, France

(Reçu le 19 juillet 1982, accepté le 23 septembre 1982)

Abstract. — In a substance with a substituted chlorine on the central ring of an alkylphenyl cyanobenzoyloxybenzoate we obtain evidence in a biaxial fluid medium for anomalies of periodicity similar to those initially found in the nematic and smectic A phases of the unsubstituted series (« DBn »). From X-ray studies, microscopic observations, D.S.C. recordings and magnetic measurements, a new mesomorphic nematic-smectic A2-smectic C2-smectic? sequence is reported. In the three smectic modifications there is a liquid-like order within the layers (even at short-range) and the layer thickness is close to two molecular lengths. The lowest temperature smectic phase seems to be a new lamellar structure with well defined layers.

1. Introduction. — From the X-ray studies of the homologous compounds of the alkylphenyl cyanobenzoyloxybenzoate series (« DBn » for short), it is known that two collinear wave vectors coexist in the nematic and smectic A phases [1-3]. They are related to two modulation periods of the layers: one the density wave is connected to the molecular length, the other is schematically connected to dipolar pairs of molecules with a weak overlapping [4, 5].

For the short aliphatic chains with \(n = 5 \) or 6, the two periods appear commensurated with a ratio of 2. Decreasing the temperature from the nematic phase leads to a « bilayer » smectic A2 phase through the condensation of a periodicity close to twice the molecular length. In this case \((n = 5, 6) \) only the very unusual intensity of the Bragg spots 002 gives evidence for establishing two characteristic wave vectors [1, 3].

(*) Laboratoire associé au C.N.R.S.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyslet:019820043022077900
So far, these anomalies of unidimensional condensation (1D) in three dimensional fluids involve only optically uniaxial media, except partial bilayer S_c in some reentrant systems [6, 7]. Can these properties exist in fluid media with optical biaxiality? The results presented here give a positive answer to this question.

This result has been achieved by synthesizing a cyano compound similar to those of the DB$_n$ series but with a lateral substituted chlorine and by conducting some primary physico-chemical observations. The formula of this substance octyl-phenyl 2-chloro-4-(p-cyanobenzoyloxy) benzoate is the following:

$$\text{C}_8\text{H}_{17} - \text{OCO} \ - \text{OCO} \ - \text{OC} - \text{CN}$$

(labelled « DB$_8$ Cl » here after).

2. Experimental results. — By means of polarizing microscopy and D.S.C. measurements, four mesophases which are enantiotropic are detected in DB$_8$ Cl.

Below a nematic state, the mesophase II between 155 °C and 117 °C (Fig. 1) is a uniaxial medium as indicated by large homeotropic areas with some fan shaped textures (Fig. 2a). The X-ray analysis of an aligned sample cooled down from the nematic phase in a magnetic field of 0.3 T provides the characteristic patterns of a smectic A$_2$ phase with an increase of the intensity of the 002 reflection as the temperature decreases (Figs. 3a and b).

Over the temperature interval of 117 °C-107 °C (Fig. 1) the mesophase III gives rise to schlieren textures in the homeotropic parts indicative of a biaxiality, while broken fan shaped textures are observed elsewhere (Fig. 2b). In addition to the fact that the order is liquid-like within the layers, the X-ray patterns of this phase corroborate the fact that the planes are no longer normal to the director. We conclude that this phase is a smectic C in which the commensurate lock-in occurring in the S$_{A2}$ is retained (Fig. 3c). In particular the first and second order layering reflections always have similar intensities and the layer spacing $d = d_{S_{A2}} \cdot \cos \theta$, θ: tilt angle which varies from 0° to 30° as the temperature decreases (Fig. 4).

Thus, this is a « bilayer » smectic C noted S$_{C2}$ by analogy with S$_{A2}$.

Fig. 1. — D.S.C. thermogram for DB$_8$ Cl.
Fig. 2. — Optical textures of DB₃ Cl between crossed polarizers (x 250): a) smectic A₂ (black areas are homeotropic); b) smectic C₂ (same area); c) smectic, (same area).

At 107 °C a sudden textural change makes the Sₐ₂ → mesophase IV transition obvious for the microscopic observations and a clear heat peak is recorded by D.S.C. (Fig. 1). At lower temperatures, schlieren textures far different from those observed in the Sₐ₂ phase are established and the fan shaped textures no longer appear broken (Fig. 2c).

In contrast, the differences between this phase and the Sₐ₂ phase are much less evident from X-ray photographs: at wide angles the diffuse scattering always indicates a liquid-like order at very short-range (Fig. 5). At small angles for a given exposure time, only an enhancement of the intensities of the 001 and 002 Bragg reflections and the occurrence of higher orders are noticeable (Fig. 3d). Considering reticular measurements, at the Sₐ₂ → Sₗ transition a sharp drop of the layer thickness is observed which is consistent with the fact that this transition is first order. Then the tilt angle smoothly decreases in the low temperature Sₗ phase (Fig. 4).

3. Discussion. — As expected the substitution of a chlorine on the rigid core of the DBₙ series induces a biaxial-bilayer fluid phase of Sₐ₂ type through the new N-Sₐ₂-Sₐ₃ sequence. Note that the Sₐ₃-Sₐ₃ change is characterized by a heat capacity discontinuity (much stronger than in the usual Sₐ₃-Sₐ₃ transitions) without latent heat or critical heat capacity excess, strongly suggesting a mean-field behaviour of this second order transition.
Cooling down from the $S_{A_2} - S_{C_2}$ transition, the apparent magnetic anisotropy $\Delta \chi$ determined from measurements of the susceptibility parallel to the magnetic field [8, 9] (Fig. 6) indicates an increase of the biaxiality in the S_{C_2} phase in good agreement with the X-ray analysis and microscopic observations. Moreover we have to mention that in the case of « a more complex frustrated system » this S_{C_2} is likely to occur as the last fluid mesomorphic stage at low temperature [10].
Fig. 5. — Comparison of the intensity profiles between the S_{C_2} phase and the S_7 phase ($\lambda = CuK_{\alpha}$).

Fig. 6. — Thermal evolution of the apparent magnetic anisotropy for DB$_8$ Cl (determined from susceptibility measurements parallel to the magnetic field).

On the other hand, we can claim that in DB$_8$ Cl the mesophase IV is a new smectic modification with a well defined lamellar structure (no permeation ?) without any translational order. Moreover the occurrence of such an unexpected smectic structure induces an enhancement of the orienta-
tional order \(\eta \), indeed \(\Delta \chi \) which depends on \(\eta \) [9] increases at the \(\text{SC}_2 \rightarrow \text{mesophase IV} \) transition (Fig. 6). Although not very pronounced, the asymmetric shape of the intensity profile of the diffuse ring at large angle on the powder diagrams in the \(\text{S}_2 \) phase (Fig. 5) might correspond to a molecular or bimolecular anisotropy change. Let us remark that a new mesophase having features similar to the mesophase IV has been seen in a chiral compound: the X-ray diffraction pattern is identical to that of \(\text{Sc} \) except for the number of observed Bragg reflections which is higher than usual, in this case the layer thickness corresponds to one molecular length with a 50° tilt angle. Moreover a transition between a smectic C and this mesophase has been observed in binary mixtures of chiral compounds [11].

Finally, in the \(\text{DB}_n \) series with \(n \geq 7 \) the two wave vectors appear incommensurated in the nematic phase. Consequently, only one-dimensional modulation is first condensed in these fluid systems giving a « partially bilayer » \(\text{S}_{\text{A}n} \) with « monomolecular » fluctuations prior to the commensurate \(\text{S}_{\text{A}n} \) lock-in at low temperature [3, 12]. The question raised in \(\text{DB}_8 \) Cl is: why the substitution of a chlorine on the rigid core with \(n = 8 \) favours a commensurate lock-in even in the nematic phase?

References