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Résumé. — Nous calculons la densité d’états sur un fractal en tenant compte des propriétés d’échelles
pour le volume et la connectivité. Nous utilisons la méthode de Green développée par ailleurs,
qui utilise une relation au probléme de diffusion. Nous avons trouvé que, pour compter les modes
correctement, on doit avoir un espace réciproque avec une nouvelle dimensionnalité de fracton

d=23/2+9).

Ici, d est la dimension effective, et & est exposant que caractérise la variation de la constante de

diffusion avec la distance. Par exemple, nous trouvons pour les amas de percolation, d = 4/3, quelle
que soit la dimensionnalité Euclidienne d 4 la précision numérique disponible. Nous discutons le
«crossover » vers un comportement normal aux basses fréquences pour des fractals finis, et pour
la percolation au-dessus du seuil de percolation p.. Nous examinons aussi la pertinence de nos
prédictions en les confrontant & des résultats expérimentaux sur les protéines.

Abstract. — The density of states on a fractal is calculated taking into account the scaling properties
of both the volume and the connectivity. We use a Green’s function method developed elsewhere
which utilizes a relationship to the diffusion problem. It is found that proper mode counting requires
a reciprocal space with new intrinsic fracton dimensionality d = 2 d/(2 + J). Here, d is the effective
dimensionality, and & the exponent giving the dependence of the diffusion constant on distance.
For example, we find for percolation clusters d = 4/3 within the numerical accuracy available,
independent of the Euclidean dimensionality d. Crossover to normal behaviour at low frequencies
is discussed for finite fractals and for percolation above the percolation threshold p.. Relevance
to experimental results on proteins is also discussed.

(*) Permanent address : Department of Physics, University of California, Los Angeles, California,
90024, U.S.A.
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The purpose of this note is to calculate the density of states on fractals. We do this using a
Green’s function technique [1], which avoids the use of boundary conditions and wave vector
counting. We show that the usual relationship between the density of states and the Euclidean
dimensionality (d) does not apply. The density of states cannot be described in terms of an ano-
malous dimensionality (d) alone but requires an additional index describing the internal struc-

ture. We determine a fracton dimensionality (d) of the relevant reciprocal space which assures
proper mode counting for a fractal in terms of the index governing diffusion () and the ano-°
malous or fractal dimension (d). The density of states for free particles and for lattice vibrations
is determined. We apply these results to polymer chains, the triangular Sierpinski gasket, and
to percolation networks.

We were directly motivated by the recent work of Stapleton et al. [2] who found an anoma-
lous temperature dependence for the ESR spin-lattice relaxation time of iron in several proteins.
They interpreted their measurements in terms of an anomalous vibrational density of states
arising from a suggested fractal structure for the proteins. However, they included only the
anomalous dimensionality d in their analysis.

The density of states on fractals should also be of interest in other situations. Examples would
be the role of geometrical disorder in amorphous systems, and the specific heat of fractal-like
systems in the intermediate temperature range (see below).

1. Method of calculation. — We consider problems defined on a fractal so that both the
available volume and the connectivity are determined by the fractal geometry. An explicit way
of realizing a fractal model is to consider solutions of the relevant equations on a network of
wires connected in a suitable geometry [3]. We take the network to be homogeneous. Our results
will apply for times or frequencies such that the associated distances are much larger than the
size of the individual bonds making up the network, but much smaller than the total size of the
network. Formally, we are assuming that one can define some local geometry on the fractal in
which the Laplacian has its usual form (i.e. is equivalent to a local g expansion). This is defined
by the wires for a network model. While this may not be possible for all conceivable fractals,
we believe it is certainly possible for most cases in which one would be interested. One finds
that the formal relationship between problems initially described by Laplacians (or by equi-
valent finite difference equations [4]) is maintained.

The structure of the diffusion equation is such that it can be mapped onto a master equa-
tion, which in turn has the same form as the free particle Schrodinger equation and the equa-
tion of motion for mechanical vibrations (see Sec. 3 of Ref. [3], and Ref. [5]). This will enable us
to map the eigenvalue density of states for the quantum vibrational problem onto the eigen-
value density of states of the diffusion problem. The latter can be obtained from the single site
Green’s function for the diffusion problem [1] :

N(e) = —%Im(ﬁo(—s+i0+)> (1)

where P(¢) is the Laplace transform of P(t), the autocorrelation function, with ¢ the spectral
parameter. In physical terms, if a particle is initially at the origin at time ¢t = 0, the probability
of finding it there at time ¢ is given by P,(t). We now calculate this quantity directly.

On a fractal one expects, in general, anomalous diffusion [6]. We write,

{ri() ) oc tHC*D )

where & is an index which depends on the geometry (i.e. it is the diffusion constant scaling expo-
nent). In general, one expects 6 # 0. The total volume available on the fractal, within the dif-
fusion distance, is

V() oc < r(t) Y2, 3)
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where d is the anomalous or fractal dimensionality. Thus,
CPolt) y oc [V()] 7 oc 724D, @

We have thus assumed that the diffusion length is given by a power law (Eq. (2)) and that
it is the only relevant length scale in the problem. Using equation (1), one is immediately led
to the eigenvalue density of states for the diffusion problem :

N(e) c &, (5)
where
x=[d2+8]-1. ©)

As shown explicitly in reference [1], the spectral parameter ¢ can be related to the energy eigen-
values of the vibrational problem by replacing ¢ by w? and multiplying by w :

N(w) < o?, (7)
where
p=2x+1=[2d/2+3)]-1. ®)

We refer to the quantized vibrational states on a fractal as fractons.

For positive 3, x and p are always smaller than the anomalous dimension result (x = d2)-1,
p=d—1 as suggested in Ref. [2]). The reason for the difference is that the scale dependence
of the elastic constants is also anomalous (i.e. it depends on 5). It is not sufficient to consider
only the mass scaling described by d.

Our results, equations (5)-(8), can be described by a « mode counting » reciprocal space of
effective dimensionality

d=23)2 + ). )

We shall call this the fracton dimensionality. For a standard Laplacian (4 — g?) expansion,
this is the relevant dimensionality. It determines the relevant Hilbert Space for Laplacian equa-

tions on the fractal. We emphasize that the fracton dimensionality (d) is an intrinsic property
of the fractal geometry. It differs from the mass scaling exponent, or the fractal dimensiona-
hty (d), and from the diffusion constant scaling exponent (), in being independent of the manner
in which the fractal is embedded in an external space (of Euclidean dimension d). The d depen-
dence of d and & cancels out in equation (9).

We note that this seems to be the natural extension of a gradient expansion to fractals. The
obvious alternative of expanding in undistorted real space gradients leads to a singular expan-
sion (¢ ~ g**%) and a reciprocal space of dimensionality d (using Eq. (2)).

2. Some examples. — It is useful to consider some examples.
a) Consider a one dimensional chain whose configuration is described by a random walk
or self-avoiding walk. One has

NYocr, (10)

where N is the length (number of units) of the chain. Thus,
d=v1. (11)
For diffusion along the chain,

N2(t)oc t,
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and from equations (10) and (11),

(r2(t) Y c (N»(@t) ) oc t”, (12)
so that
6 =2d-1), (13)

leading to (Egs. (6), (8), and (9)),
x=12, p=0, and d=1. (14)
The fracton dimension (d) for this problem is identically one, and is independent of v.
b) Consider a triangular (d = 2) Sierpinski gasket. One has [3, 7]
§ = [(In 5)/(In 2)] — 2 ~ 0.322, (15a)
d = (In3)/(n2) ~ 1.585, (15b)
but the fracton dimension is (Eq. (9)),
d = 2(In 3)/(In 5) ~ 1.365 . (16)

Thus, the gasket is somehow more one dimensional than suggested by d. For the eigenvalue
density of states, one has the spectral parameter exponent (Eq. (6)),

x = [(In3)/(In5)] - 1 ~ — 0317, (17a)
and the fracton w exponent (Eq. (8)),
= [2(In 3)/(ln 5)] — 1 ~ 1.365. (17b)

¢) Consider a critical percolation network. Taking the infinite cluster at the critical percola-
tion concentration p_, one has from straight forward scaling considerations [8],

d=d— (B/v), (18)
where d is the Euclidean dimensionality of the external space, and [3, 6]
§=(t— B, (19)
where t is the conductivity exponent. Thus, ‘
d=2dv—B)it—PB+2v). (20)

Table 1. — The fracton dimensionality d defined in equation (9) and the eigenvalue density of
states indices x (Eq. (6)) and p (Eq. (8)) as a function of the Euclidean dimensionality of the per-
colation problem (d). The fractal dimensionality d (Eq. (18)) and & (Eq. (19)) were computed from
the numerical values in referencel[8].

d d x p d b}
2 136 —032 036 19 080
3 142 —-029 042 25 155
4 139 —-030 039 33 271
5 144 —028 044 38 33
© 4/3 - 1/3 13 4 4
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We give results for d in table I as a function of the Euclidean dimensionality (d) for Stauffer’s
values [8] of the indices ¢, B, and v for the percolation problem. One notes the very weak depen-
dence of the fracton dimensionality (d) on the Euclidean dimensionality (d) of the percolation
problem. This is in sharp contrast to the behaviour of d and d. The table certainly suggests the
conjecture that, for percolation on the infinite cluster,

S|

= 4/3, (21)

independent of d (see note added in proof).

3. Crossover and finite size effects. — The Laplace transform of equation (2) yields a rela-
tion between length scale and the Laplace transform spectral parameter &. We are able to find
a characteristic diffusion length scale appropriate to the spectral parameter ¢, 4,, which varies
as [3]

A, oc g7 U@+ (22a)
Mapping onto the vibrational problem as before,

A, o @@+ (22b)

Fractal behaviour is found for length scales less than the size (L) of a fractal object. For larger
length scales, the solutions are, in essence, uniform over the fractal and the density of states is
determined by the boundary conditions. Crossover to fractal behav1our occurs when A, < L,
or for energles

~ a2 -2+
€co. T W, Z L ( )’ (23)

where the subscript c.0. means crossover. For ¢ > ¢, (or ® > ., ), the eigenvalue density
of states is then given by equation (5) (or Eq. (7)). For a percolation network above p,, one pre-
dicts normal d-dimensional low frequency vibrational density of states (p = d — 1) crossing
over to fracton behaviour for vibrational frequencies above (Eq. (23))

W0 (P) 0 £ 2HON2 , (24)

where £ is the percolation correlation length.

4. Discussion. — We conclude with some remarks concerning the relevance of our results
to experiment. We have analysed the eigenvalue density of states for diffusion on a fractal geo-
metry, and mapped our results onto the vibrational eigenvalue density of states for systems
with the same geometrical structure. For the vibration problem, this assumes that both the
elastic constants and the inertial mass are appropriate to a free fractal. It is important to empha-
size that this is not necessarily a proper physical description. It is, in fact, hard to think of a
situation where the vibration spectrum of a polymer would be adequately described by our
free fracton model. For gels, the mass density is always dominated by the solvent, and there-
fore scales with the Euclidean dimensionality of the external space (d). Any fractal anomalies
would only reflect the scaling properties of the elastic constants. It is conceivable that something
similar occurs for proteins where one would also expect an essentially uniform density. This
might be relevant to the interpretation of the results of Stapleton et al. [2] and to other measu-
rements in which the vibrational density of states of proteins is important [9].

This work was supported in part by the U.S. National Science Foundation and the U.S.
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Office of Naval Research. We wish to acknowledge helpful correspondence with H. J. Stapleton,
and very useful conversations with T. C. Lubensky, R. Rammal, G. Toulouse, and J. Vanni-
menus (see note added in proof).

Note added in proof. — Professor T. C. Lubensky has noted (private communication) that
some intriguing consequences follow if one takes seriously the results of the table for the per-

colation problem. He notes that if one assumes that d = 4/3, independent of d, one can use
equation (20) to generate an expression for the exponent ¢ in terms of v and B :

t=(12)[v3d -4 - f].
Two consequences are worth noting.

1) Using the values of f and v following from the den Nijs conjecture at d=2 (M. P. M. den
Nijs, Physica (Utrecht) A 95 (1979) 449) : B = 5/36 and v = 4/3, one finds t = 91/72 = 1.264.

This differs from ¢ = 1.1 presented by S. Kirkpatrick (La matiére mal condensée, Ed. by R. Ba-
lian, R. Maynard and G. Toulouse (North-Holland publishing company, Amsterdam) 1979,
p. 321), and is not in accord with the relation t = v (A. K. Sarychev and A. P. Vinogradoff, J.
Phys. C 14 (1981) L-487). A very recent finite size scaling (simulations on finite size strips) of
B. Derrida and J. Vannimenus (submitted for publication, 1982) finds ¢ =~ 1.28, in close accord

with the above consequence (t = 1.264) of setting d = 4/3.

2) The links and node model led A. S. Skal and B. I. Shklovskii [Fiz. Tekh. Pgluprov. 8 (1974)

1582 (Sov. Phys. : Semicond. 8 (1975) 1029)] to define t = (d — 2) v + (. Setting d = 4/3, solving
for t, and using appropriate scaling relationships, leads to the expression, valid for all d,

{=012)B+7).

G. S. Grest and M. J. Stephen (Phys. Rev. Lett. 38 (1977) 567) and C. Dasgupta, A. B. Harris
and T. C. Lubensky (Phys. Rev. B 17 (1978) 1375) show that (., = 1 + 0(¢*) where ¢ = 6 — d.
If we use perturbation theory results for # and y (R. G. Priest and T. C. Lubensky, Phys. Rev.
B 13 (1976) 4159 ; B 14 (1976) 5125; D. J. Amit, J. Phys. A9 (1976) 1441) :

B=1—(1/7)e— (61/7°322%) &> + -
y=1+ (1/7) & + (565/7* 32 22) &% + -

we find
lpen = 1 + 2/49

as required to 0(e2). For d - 2, tyen = { = 1.33, obviously outside the range of « safe » conver-

gence (¢ = 4), but remarkably close to the conjecture (d = 4/3) value of t = 1.264.
Finally, from another perspective, R. Rammal and Angles d’Aurioc (submitted for publica-
tion, 1982) have found values for d and § for the Sierpinski sponge in d dimensions. They find

d=[lnd+1)]/m2, &6={[Ind+3)m2}-2
so that
d=2ln@d+ 1)]/Ind +3).

These results agree with ours for the case we considered, d = 2. In addition, the asymptotic
d — oo limit for d is 2, quite different from the d — oo limit for the percolation problem, 4/3.

The ratio, d/d = (In 4)/[In (d + 3)] is always less than unity for d > 2, exhibiting the same
trend as we have exhibited for d = 2.
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