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Flory exponents for generalized polymer problems

J. Isaacson and T. C. Lubensky

Department of Physics, University of Pennsylvania, Philadelphia, Pa 19104, U.S.A.

(Re~u le 21 juillet 1980, accepte le 12 aot2t 1980)

Résumé. 2014 On emploie l’approximation de Flory pour calculer la dimension critique dc en dessous de laquelle la
théorie de champ moyen ne s’applique plus. Ensuite, on calcule l’exposant critique 03BD contrôlant la variation du

rayon de giration R avec le nombre de monomères N. En particulier, on étudie des polymères linéaires et ramifiés
en solutions diluées avec un bon solvant et dans des phases fondues monodisperses. En plus, on étudie des polyélec-

trolytes linéaires et ramifiés en solution diluée. Comme nouveaux résultats, on obtient 03BD = 5 2(d + 2) pour des
polymères ramifiés en solution diluée, dc = 10 pour des polyélectrolytes ramifiés et une dérivation modifiée de

Flory du résultat exact 03BD = 2/d - 2 pour des polyélectrolytes linéaires.
Abstract. 2014 We use Flory’s approximation to calculate the upper critical dimension, dc, below which mean field
theory breaks down. We also calculate the exponent 03BD controlling the dependence of the radius of gyration, R, of a
polymer on the degree of polymerization N. In particular, we treat linear and branched polymers in dilute good
solvents and in monodisperse melts and linear and branched polyelectrolytes in dilute solutions. New results include

03BD = 5/2(d + 2) for dilute branched polymers, dc = 10 for dilute branched polyelectrolytes, and a modified Flory
derivation of the exact result 03BD = 2/d - 2 for dilute linear polyelectrolytes.
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The Flory approximation [1] for the radius of gyra-
tion, R, of a linear polymer in a good solvent gives a
remarkably accurate prediction for the exponent, v,

controlling the dependence of R on the degree of
polymerization, N, for spatial dimension, d, between
two and four. In this approximation, competition
between an elastic energy, Fel’ tending to keep R
at its free or Gaussian value, Ro, and a repulsive energy,
F rep’ tending to swell the polymer, lead to an optimal R.
The expression for Fel is simply that of a Gaussian
chain,

(We ignore unimportant prefactors.) Ro increases as a
power of N :

where vo = 2 for linear polymers and 4 for branched
polymers [2, 3] with a fixed probability for branching.
Frep is determined by short range two particle encoun-
ters in good solvents. In dilute solutions, we have

In dense solutions or melts, the repulsive interactions
are screened by other polymers [4]. The degree of
screening is determined by the weight average degree
of polymerization of polymers in the solution, and
Frep becomes

We can use eq. (4) to treat dilute solutions with

Nw - 1 = N°, monodisperse melts with Nw - N,
and some other cases to be discussed by taking

It is well known that mean field theory with R - Ro
is valid for large enough d. The upper critical dimen-
sion, dc, below which mean field theory breaks down is
determined by Frep(Ro) ’" 1. Thus, we have

This formula was used by de Gennes [4] to find d, for
branched polymers in dilute solutions and mono-
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disperse melts and for gelation. To find v, we minimize
F = Fel + Frep with respect to R and find

Using eqs. (2) and (5), this implies

We now apply eq. (7) to a number of special cases.

l. Dilute linear polymers :

and

This is the classical Flory formula [1].

2. Dilute branched polymers :

and

For d = 8 - G, this formula yields v = 1 + ~ instead4 40
1 8

of the exact result [5] of.+Q. On the other hand for4 9
d = 2 and 3, it yields v = 8 and v = 2 in good agree-
ment with Monte Carlo [6] and series calculations [7]
yielding v between 0.57 and 0.66 for d = 2 and 0.43
and 0.53 for d = 3.

3. Monodisperse linear meits :

and

The observation that dc = 2 for this problem was
previously made by de Gennes [1]. -

4. Monodisperse branched melts :

and

This formula yields v = o for d = 3 and v = 8 for
d = 2.

5. Gelation. - This example is somewhat more

complicated than the others since Nw changes with

dimension below dc. The concentration of polymers
with N monomers, Cp(N), obeys a scaling law [8, 9]

where p is the probability that a bond has formed and
Pc is the value of p at the gel point. r and d are critical
exponents associated with percolation [10]. Cp(N) has
a pronounced peak at N = Nm ~ (p - /~e) ~ corres-
ponding to the most probable degree of polymeriza-
tion. For large d the mean field theory applies and
T = 2 and A = 2. Since Cp(N) is normalized so that
~ Cp(~V) N = C = concentration of monomers, we
N

have

Thus, vo = 4 (since we are dealing with branched
polymers), p = 2 and de = 6. This is the familiar
result for percolation. It was first derived in the present
context by de Gennes [4]. If we assume p remains 2
for d  6, eq. (8) implies

This is to be compared with vpld where vp is the perco-
lation correlation length exponent. Taking values for
Vp and J from Stauffers review article [8], we find
Vp/J = 0.526 and 0.4 for d = 2 and 3 compared with
v = 0.5 and 0.4 from eq. (15).
We have considered common special cases of eq. (5).

We note however, that it would be interesting to test
experimentally the dependence of v on p by preparing
the appropriate polydisperse melts.
The Flory approximation can also be applied to

dilute polyelectrolytes. In this case, the Coulomb

potential between charged polymers is unscreened

and, Frep should be replaced by the Coulomb energy

Setting F~p) - 1, we find

This formula produces the well known result dc = 6
for linear polyelectrolytes [11]. For branched poly-
electrolytes, it yields = 10. We have verified that
an E-expansion in 10-E dimensions is possible for this
problem. 

-

-Minimizing F = Fel + F~ with respect to R, we
find for linear and branched polymers

For linear polyelectrolytes, this yields v = 3/~ in

poor agreement with the exact result [10] v = d-2
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for 4  d  6. For branched polymers, it yields
v = 5/2 d.

It is well known [lc] that the Flory approximation
overestimates Frep because it ignores correlations and
overestimates F e1 because it treats Fel as a function of
R/Ro rather than as a function of R/RG where RG ~ N‘’
is the actual equilibrium radius of gyration in the pre-
sence of interactions. The two errors cancel to give a
good approximation. The error in Frep is difficult to
treat within the context of the Flory approach. The
error in Fel can, however be treated by replacing F e1 by

Minimizing F = Fel + Fe with respect to R, we find

This M the exact answer for linear polymers [12] for
4  d  6. It would be interesting to see if it also is
the exact answer for branched polymers for d  10.
At this stage we should ask why correcting one but not
both of the errors in the Flory approximation should
yield a much better answer for v. The answer is that
correlation effects in Frep are not so important in
polyelectrolytes because of the long range nature of the
Coulomb force. Thus, Frep is in fact correctly given by
eq. (16).

Acknowledgments. - We are grateful to P. G. de
Gennes for communicating the results of reference [4]
to us prior to publication. We also acknowledge
financial support from the National Science Founda-
tion under grant No. DMR 79-10153 and from the
Office of Naval Research under grant No. N00014-
0106.

References

[1] a) FLORY, P., Principles of Polymer Chemistry, Chap. XII
(Cornell University Press, Ithaca, N. Y.) 1971; b) FISHER,
M. E., J. Phys. Soc. Japan 26 (Suppl.) (1968) 44 ; c) DE
GENNES, P. G., Scaling Concepts in Polymer Physics,
Chap. I (Cornell University Press, Ithaca N. Y.) 1979.

[2] ZIMM, B. H. and STOCKMAYER, W. H., J. Chem. Phys. 17
(1949) 1301.

[3] LUBENSKY, T. C. and ISAACSON, J., Phys. Rev. A 20 (1979)
2130.

[4] DE GENNES, P. G., To be published.

[5] FLORY, P., J. Chem. Phys. 14 (1949) 303 ; Ref. [1c], Chap. II ;
EDWARDS, S. F., Proc. Phys. Soc. 88 (1966) 266.

[6] HERMAN, H. J., Z. Phys. B 32 (1979) 335 ;
REDNER, S., J. Phys. A, Math. Gen. 12 (1979) L239.

[7] PETERS, H. P., STAUFFER, D., Preprint.
[8] STAUFFER, D., Phys. Reports 54 (1979) 1-74.
[9] For a detailed discussion of this formula and its limitations, see

HARRIS, A. B. and LUBENSKY, T. C., To be published.
[10] See : STAUFFER, D., Review article.
[11] PFEUTY, P., VELASCO, R. and DE GENNES, P. G., J. Physique

Lett. 38 (1977) L-5.


