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(Re~u le 26 septembre 1979, accepte le 7 janvier 1980)

Résumé. 2014 Nous montrons, utilisant un développement multipolaire de la densité d’énergie interne, qu’on a
besoin de deux vecteurs et de trois tenseurs du deuxième ordre pour caractériser l’ordre local dans un liquide.
Une interprétation simple de la signification physique de ces trois tenseurs est proposée.
Nous donnons les équations d’évolution de ces dernières variables et nous montrons leurs relations avec les variables
hydrodynamiques habituelles.

Abstract. 2014 Using a multipolar expansion of the internal energy density we show that two vectors and three second
rank tensors are necessary to characterize the local order in a liquid. A simple interpretation of the physical meaning
of the three tensors is presented.
We give the equations of evolution of the latter variables and we show how they are connected to the usual hydro-
dynamic variables.
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During the last decade the influence of the local
order on the hydrodynamics of a liquid was empha-
sized by several authors [1, 2, 3]. In particular a number
of studies have been concerned with the connection
between the fine structure of the scattered light and
the local order in a liquid [4], which so far has been
described by the introduction of two tensorial quan-
tities [1, 5, 6]. With these two tensors it is possible to
explain a large number of experimental features. It is
shown in reference [3] that these tensors called G and I
can be introduced from angular momentum conser-
vation. The tensor G is related to the local order of
the centre of gravity of the particles in a volume
element, and I to the orientational order. However,
a systematic procedure describing local order was
still to be developed. In this letter, we show that such
a systematic procedure is obtained by a multipolar
expansion of the internal energy which introduces
two vectors and three tensors if the expansion is

limited to the quadrupolar order. We give the equa-
tions of evolution of these vectors and tensors.

Consider a liquid system of rigid molecules. For
the sake of simplicity we assume that the molecules
are linear, so that they are characterized by the
position of the centre of gravity ri and the orienta-
tional vector u~. The vectors u~ are normalized. For a

liquid of non rigid molecules, a polymer for instance,

(*) Laboratoire associe au C.N.R.S. n° 190.

we could consider the polymer as a chain, the position
of each rigid element of the chain being determined
by the two vectors ri and u~.
We consider the potential part of the energy density :

The function Uç(r) is equal to 1/~3 if r is inside the
cube of size ~ centred at the origin and zero otherwhise.
We call ~ the correlation length of the local order.
The function 0(rij, uij) is the potential energy between
molecule i and molecule j ; rij = ri - rj; and uij
describes the relative orientation of molecules i and j.
We recall [3] the definition of the hydrodynamic

average of an operator a(r, t) :

where r is a span of time that is short with respect to
the relaxation time of the local order, but long with
respect to the characteristic time of single particle
motion. During the span of time T it is possible to
define a local thermodynamic equilibrium. Performing
a hydrodynamic average, we eliminate the fast part
of the behaviour of the molecules (vibrations and
librations around the local equilibrium positions), and
we keep only the slow part (relaxation of the local
order).
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We now introduce the following definitions :
I

and

when n(r, u, t) ~ 0. The functions n(r, u, t) and ~(r, u, t) are the hydrodynamic averaged density and potential
respectively. With these definitions and from (1), we have

In a solid n(r, u, t) is independent of t and is different from zero only for r around the lattice sites rp and
for u around the equilibrium positions u~. We call these small volumes in the (r, u) space Vpl. The function
~(r, u, t) is also independent of t and its definition (4) holds for (r, u) E ~. The average value ~P~ of ~(r, u)
in V pz is given by :

By a smooth interpolation procedure we introduce a function Øs(r, u) defined for each value of (r, u) such
that

and

In a solid, except for very special cases, VPl is independent of P and I. Therefore 0,(r, u) is constant with
respect to changes of r and u.

In a dense liquid n(r, u, t) varies very slowly during the span of time T and the organization of the molecules
in the box of size ~ is like in a loose solid [3]. Using the above procedure, it is then possible to define a function
~(r, u, t). Note that now the 0,,’s are no longer constant but vary slightly from one value of (P, 1) to another.
Therefore 0,(r, u, t) is no longer a constant but a slowly varying function of r and u in the box of size ~. It is
then possible to perform a Taylor expansion of this function. Since the variation with respect to u is slow, any
u can be taken as the origin of the expansion. We choose uZ, the unit vector along the z axis.

Using eqs. (5) and (8) we obtain :

where
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The scalar p is the number density. m is the vector of
polarization and plays an important role in polar
fluids [7] where the Fourier transform of

is related to the dielectric constant s(co). The vector D
does not couple with an electromagnetic field in a
neutral liquid, but will be related to B(ro) in a molten
salt or an electrolyte.
The tensors G and I are the quantities introduced

in an earlier study [3] based on angular momentum
conservation. The important feature of the present
work is that the multipolar expansion introduces a
third tensor J which is independent of G and I. So J
is not related to mode coupling arising from the effects
of G and ! in the hydrodynamic equations. J describes
the correlation between centre of gravity and orien-
tational order which can be viewed as a gearing effect
between entangled molecules in a dense fluid (see
Fig. 1). So J should be an important quantity in dense
fluids of non-spherical non-symmetric to molecules
like highly viscous liquids. Note also that and I are
invariant under orientation reversal (ui -~ 2013 uj whe-
reas J is not.
The quantities V~(r, u_,, t) and VuØs(r, Uz, t) are

respectively the averaged force and the averaged
torque acting in r in the volume element dr during
the span of time T which modify the local order. By
definition of the hydrodynamic average the variation
of the local order is very slow during time T. Therefore
VrØs and VuØs are very small and we shall neglect
them hereafter.
We now present the equations of evolution for

m(r, t) and D(r, t). From (3) and (10) we redefine m
by subtracting the trivial part pu~

/ B

Fig. 1. - Representation of three typical local order structures.
On each of these local order structure we apply a shear stress
characterized by two arrows on each sketch : 1. The local order
is described by the G tensor. The shear stress induces a variation
of this tensor. 2. The local order is described by the tensors G
and !. The shear stress induces essentially a variation ofl 3. The
local order is described by the tensors G, I and J. The shear stress
induces a variation of the three tensors, particularly of the J tensor
via a gearing effect.

which by space Fourier transformation yields

where vi is the velocity of molecule i. Transforming
back into r space we obtain

,

with

where ni is the angular velocity of molecule i. Using
expressions (4.1) and (4.7) of reference [3] and

performing the hydrodynamic average of the right
hand side of (13), we find

where we have taken, as we do in the remainder the
density per unit mass, e.g., m means

The bulk angular velocity o, the librational density n,
and the external product o A J are defined in refe-
rence [3]. The time derivative of m along a flowline
is given by :

Following a similar procedure, we gei for D

Eq. (15) will be useful for the computation of the
dielectric constant B( ro) of a polar fluid.

To obtain the equations of evolution of the tensors
G, I and J we follow the same method as in refe-
rence [3]. We first write the variation of the internal
energy which with (9) and without the dipolar terms
reads

The difference between eq. (17) and eq. (5.3) of
reference [3] is the presence of the term ~ : d:r
Following the procedure described in [3], we obtain
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the same set of equations, e~c~t the eq. (5.10) of [3]
which now, after linearization, becomes :

H H H
~ =-2o~i(VV)’-2x~~-2~i3?-2o~~
~ H H H

F6 =-2~,(VV)~-2~G~-2~?-2~~F~ _ -2 a12(oV)s-2 a22 . (18)
H +-4 H H 

(18)
F; - -2 a13(oV)S-2 a23 Gs-2 a33 IS-2 a34 JS
+4&#x3E; H H H~ =-2~(VV)~-2~~-2~-2~~
and eq. (5.14) of [3] becomes

~= - 3 g~ y.y - 3 ~ G~ - 3 8i4 ~
(FG)t = - 3 G11B-f. V - 3 E22 Gt - 3 824 Jt (19)

(~), = -3~V.V-3~~-3~
where ns and 71~ are respectively the traceless part and
the trace of the stress tensor. In eq. (15) we restrict the
multipolar expansion to second order. Because of
Curie’s principle, in an isotropic fluid, coupling can
exist only between tensors of the same order. The
highest order tensor which appears in classical

hydrodynamics is the stress tensor ~ If the multipolar
expansion is performed up to an order higher than
two we can find contracted tensors of order two. For
instance there are tensors of order four, which, after
contraction reduce to tensors of order two which

couple with the stress tensor. However as mentioned
previously, since the variation of the local order is
small over the distance ~, the multipolar expansion
must converge quickly. Therefore eq. (18) is certainly
a good approximation since it amounts to neglect

terms of order four with respect to terms of second
order.
We now come back to the comparison between

the earlier study [3] and the present work. In reference
[3] it is shown that the tensors ~ andï are two slow
variables which describe the local order. Up to

equation (5.2) the results are a logical deduction from
the introduction of angular momentum conservation.
But eq. (5.3) which gives the variation of the internal
energy is phenomenological. This equation takes into
account the fast single particle motion with the terms
T dS-P d V, and also the slow variation of the local
order with the terms f, : 01 + fg: dG. But there
is no reason to assume that I and are the only slow
variables describing the local order. The advantage
of the present work is to introduce a systematic
procedure which gives all the variables related to the
local order. Eq. (17) of the present work is no more
phenomenological but the result of a multipolar
expansion which introduces not only the tensors G
and I but also the tensor J which cannot be introduced
from angular momentum conservation.

Applications of the theory developed in the present
work will be given in two forthcoming papers [8, 21
where it is shown that the introduction of the tensor J
is necessary to interpret ultrasonic and light scattering
experiments in viscous fluids.
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