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Résumé. — On montre que ’on peut obtenir un certain nombre de réseaux aléatoires continus en appliquant de
maniére particuliére des réseaux ordonnés appartenant a des espaces de courbure constante sur I’espace euclidien
habituel. Ces applications se caractérisent par I'introduction de deux types de défauts de réseau : défauts de sur-
faces pour les espaces & courbure constante positive (espaces sphériques), disinclinaisons pour les espaces a cour-
bure constante négative (espaces de Lobatchewski). Cette méthode pourrait apporter des éléments de réponse
aux difficultés rencontrées dans la description systématique des amorphes a liaisons métalliques ou covalentes.

Abstract. — A number of continuous random lattices can be classified as specific one-to-one mappings of ordered
lattices of spaces of constant curvature onto the usual 3-dimensional euclidean space. These mappings put emphasis
on two types of lattice defects : surface defects for spaces of constant positive curvature (i.e. spherical spaces),
disclinations for spaces of constant negative curvature (Lobatchewskian spaces). This method might provide
clues for solving the difficulties encountered in the description of amorphous solids with metallic or covalent bonds.

1. Introduction. — There is at the moment a large
amount of discussion about the crystallographic
properties of amorphous materials (glassy states).
We restrict here the consideration to glasses which
can be described as resulting from a long range
random packing of hard spheres; these materials
always present some sort of short range order, for
example the occurrence of five numbered rings of
bonds [1]. This local arrangement originates in the
energetic prevalence of regular tetrahedra of closed
packed equal atoms : regular tetrahedra cannot fill
space regularly but, at the expense of some slight
elastic distortion, assemble into small regular clusters,
the simplest type being a set of 5 tetrahedra with a
common edge (i.e. a set of 7 atoms). Larger units can
be observed, based on the same local arrangement [2].
Other local arrangements exist, for example in covalent
solids [3].

In most amorphous metallic solids the average
number of atoms in contact with a given atom is
slightly smaller than z = 12 [4]. For Z = 12 every-
where, one obtains the largest packing density of
space filled with a regular set of hard spheres (the fcc
lattice), this density beingd = n(18)~ /2 = 0.740 48...
A remarkable aspect of amorphous solids is that the
packing density is not very much smaller than the
theoretical largest one for the regular lattice. Known
analyses of random packings [5] differentiate between
loose random packing which reaches a density of
d = 0.6, with Z = 6 (more than 6 atoms, however,

at a small distance) and (when a vessel containing
loosely random packed grains is shaken), close random -
packing, with d = 0.64. This is practically the density
of packing of amorphous metallic solids. Then a
natural question arises; is short range (pentagonal)
order enough to generate such a random network ?
The answer of most authors is positive. But are there
other types of short range order which would also
generate randomness, and what are these types ?
This paper wants to give a (probably) partial answer
to these questions.

Two important steps have been made recently in
the understanding of the crystallographic (dis)order
of amorphous solids, by Sadoc and by Rivier [6].
Let us summarize their findings.

Sadoc starts from the remark that, whereas regular
tetrahedra are not space fillers of the 3-dimensional
euclidean space R, they tile regularly the 3-dimensio-
nal sphere S, (analytically, S; is the manifold satisfying

4

the equation Y x? = 1in R,), on which they build a
i=1

so-called regular polyrope. A polytope is nothing else
but a n-dimensional analog of an ordinary 2-dimen-
sional polyhedron scribed on an ordinary sphere S,.
(See ref. [7] for classification of polytopes and part 2
of this paper for a brief outline of the subject.) It
turns out that the polytope considered by Sadoc
contains 600 tetrahedra (5 of them around each edge,
as in the 7-atom aggregate considered above), 1 200 tri-
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angles, 720 edges, 120 vertices (i.e. 120 atoms). Each
vertex has 12 neighboring atoms.

Now it is always possible to map S; (and the poly-
tope vertices scribed on it) on a part of R (only a part
because S; has a finite volume) and obtain an atomic
arrangement which has some of the desired properties
of an amorphous metal. (We shall sum up these ideas
in part. 3.)

Rivier [6] considers the problem from a different
point of view; he has established this extremely
interesting result : odd-numbered rings of atoms in a
continuous random network (this is Zachariasen’s
terminology for a close random packing) are located
along closed lines which cross them but do not cross
even-numbered rings. He identifies such (virtual)
lines with disclination lines and classifies them as
elements of the homotopy group n,(E;) = Z,, where
E;, the euclidean group, is also the manifold of
internal states of an amorphous solid (according to
his analysis, which at this level is very similar indeed
of the analysis done by Toulouse for spin-glasses [8])
and Z, the abelian group of order two. For the use of
homotopy groups in physics, see ref. [9].

Both these works clearly proceed from a common
belief in the existence in glassy states of some features
of order not yet conveniently described. We share
this belief and propose an answer which generalizes
both. Our analysis will ultimately lead to a classi-
fication of continuous random networks, «a goal
which has occupied mathematicians from the
seventeenth century onwards » (Bernal), without being

{3,3}
tetrahedron

{4,3}
cube
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{3,4}
octahedron
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reached, since they are interested in filling space with
polyhedra. The key concepts will be crystallographic
in nature, not in euclidean space, but either in spherical
space (constant positive curvature) as pointed out
above, or in the simply-connected hyperbolic space
(constant negative curvature) as introduced below ;
defects will play an essential physical role in this
crystallography, in a much more dramatic way than
usual, but they do not appear in the same way in
spaces of positive and negative curvatures.

These concepts will be discussed in part 3 for
spherical spaces and in parts 4, 5 and 6 for spaces of
negative curvature.

2. Regular lattices in curved spaces. — 3-dimensional
curved spaces with constant curvatures can be tiled
with cells consisting in regular polyhedra, achieving
in this way a so-called regular honeycomb. Here the
word regular means that all the faces of each poly-
hedron are equal and that all the edges of each face
are equal. The standard notation which covers the
various cases is the Schlifli symbol {p, ¢, 7} (p, g, r
integers) where p is the symmetry order of a face
(p = 3 for an equilateral triangle, p = 4 for a square),
q the number of faces around a vertex in a cell (p = 3,
q = 3 define a regular tetrahedron, {4, 3} a cube);
more generally { p, g} defines a cell, i.e. a regular
polyhedron, and { p, ¢, r} an assembly of {p, q}
cells, r of which around a common edge.

There are five regular polyhedra

{3,5}
icosahedron

{53}
dodecahedron

and only five because, since the characteristic angle of a regular p-gon is < 1 — %) , since g of them have to fit

around a common vertex, and since the angle of a spherical { p } is greater than (1 - I_’> w, this yields

( 2) 2n
l—-=|n<—
p q
or .
P-2@-2<4. M
All other sets { p, ¢ } which do not satisfy (1), either describe a regular honeycomb of the euclidean plane :
P—-2@-2)=4-> {44} {3,6} {6,3}
sets of squares, of triangles, of hexagons

or a regular honeycomb of the hyperbolic (Lobatchewskyan) plane :

(»p —2)(g — 2) > 4 - these sets { p, g } are infinite in number .

In other words, the Schlifli symbol { p, g } describes as well polyhedra and honeycombs in two dimensional

curved spaces.

Now let us join r regular polyhedra around a common edge. Schléfli’s trigonometrical condition reads as

follows : the quantity

A n
Sin — sin — — COS —
p r q
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1s positive for a spherical space, negative for an hyperbolic space, null for an euclidean space. There are :

e six spherical polytopes

{3,3,3} {3,3,4} {4,3,3} {3,4,3} {3,3,5} {5,3,3}
e one euclidean honeycomb (only), made of cubes
{4,3,4}
e cight hyperbolic honeycombs
{6,3,3} {5,3,4} {6,3,4} {4,4,3} {4,3,5} {3,5,3} {535} {6,3,5}.

Apart from regular honeycombs (or polytopes),
it will be interesting to consider ordinary lattices and
quasi-regular polytopes. They can be classified by
their group of symmetry. We have space groups in
spherical or hyperbolic space, as we have Schonflies
groups in euclidean space. The space groups in sphe-
rical space have finite order (there are no translations) ;
their order is infinite in hyperbolic space.

Itis not possible to give here even a short description
of space groups in curved spaces. For details see
ref. [10].

3. Amorphous tetrahedral packing and the polytope
{3,3,5}. — Let us consider tetrahedral packing,
as it is an important physical case, and consider
possible polytopes whose mappings on euclidean space
would generate amorphous materials of this type.
We have three possibilities {3, 3,3}, {3,3,4} and
{ 3, 3,5 }. But only the last one is attractive, because
each vertex has a reasonable amount of neighbors
(z =12), while z=4 for {3,3,3} and z = 6 for
{3,3,4}. Also the packing density is larger in
{ 3, 3,5} than in any of the other polytopes [5].

The polytope {3,3,5} contains 600 tetrahedra
and 120 vertices. Each vertex, being surrounded by
12 neighbors, is the center of an icosahedron. If each
vertex is replaced by an atom, one obtains an excellent
approximation (although in a curved space) of the
amorphous dense-packed structure described in
refs. [1] and [2].

Now it is always possible, in fact in many ways as
we shall discuss in the next paragraph, to map the
sphere S; and the { 3,3, 5} polytope scribed on it,
on a part (since S, is finite) of the euclidean space R ;.
Such a mapping will necessarily introduce non-homo-
geneous distortions in the lengths. These distortions
are sources of elastic stresses in the euclidean physical
space. But they are not too large, because S; is small
and involves only 120 atoms. As for the surface 2
limiting in R; the mapping we have performed, it is
the image in this mapping of the lips of a two dimen-
sional cut in S;. This cut is the exact analogue (in
3 dimensions) of the one dimensional cut we would
have to perform on a sphere S, in order to map it on
a plane. Peeling an orange is a practical example of

such a cut, from which case we see by extrapolation
to 3 dimensions that we are left with numerous
possibilities in the choice of X.

In summary, the mapping of S; on R; induces

— elastic distortions which keep the local ico-
sahedral order unchanged,

— a closed wall, the image of Z, surrounding the
cluster of 120 atoms, with a higher randomness of
the atoms and a local discontinuity of order.

These two kinds of effects are correlated. It is clear
that the larger the closed wall area, the smaller the
elastic distortions, and the larger the packing density.
The total packing density of an amorphous medium
is obtained as an average on a set of images of S,
in contact along walls.

It is possible to achieve a contact between two
images in order to make a perfect fitting at the wall,
without change in local order, but not to suppress
the higher disorder at triple junctions (*). With such a
model, one of us (J.F.S.) has calculated the packing
fraction as a function of a single parameter with which
it is possible to define the mapping, viz. the elastic
distortion, and has found that, whereas the bulk
contribution to this packing fraction decreases with
increasing elastic distortion, the wall contribution
increases. A computed model leads to an optimum
value of d : 0.63, in good agreement with the experi-
mental value in hard sphere packing. J.F.S. will
publish this model in a future paper.

4. On mappings between spaces of different curva-
tures. — This short qualitative discussion of a possible
model for close random tetrahedral packing, based
on the use of { 3, 3, 5 }, has shown how 2 dimensional
defects are introduced naturally in this case, essentially
because S; is a finite manifold. But, as shown by
M. Kléman, in the most general case of mapping
between different manifolds, the defects which are
introduced naturally are linear defects, more precisely :
disclinations. This can be demonstrated as follows.

Let us consider a three-dimensional Riemannian
manifold M (S, is such an object) and map it on R3.

(*) Therefore one can join any two points in the amorphous
medium by a path which meets the same local order all along.
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Many ways exist of doing this, some of them being
likely to have more physical meaning than others.
For example it is always possible to map M confor-
mally (i.e. conserving angles) on Rj, in a one-to-one
mapping ; but, when applied to S;, such a mapping
changes the lengths quite drastically. A geodesic
mapping (transforming geodesic lines of M to straight
lines in R;), although not possible in the general case,
exists between S; and R;. However it distorts lengths
(in fact more than the conformal mapping). An
isometric mapping (conserving distances between
atoms in M) would be the most exciting thing to do,
but unfortunately is not a one-to-one mapping. It is
however this mapping that we want to use, so that
we have first to recognize the nature of this multi-
valuedness. The theorem of Riemannian geometry
which is at the heart of our analysis reads as follows :

Theorem [11, 12] : the parallel transport of vectors
from one point of a Riemannian manifold to another
point along a fixed path C in a linear isometric ope-
ration.

We shall not define with precision the various
concepts which we use here : intuitively, this theorem
means that it is possible to roll (without gliding) a
Riemannian manifold on an euclidean manifold along
a fixed path (think of a conventional sphere S,, of
any line on S,, and of a plane), such that a) the
distances along the path are conserved, b) the angles
between vectors attached to the path and the path
itself are conserved. In particular, if C is a geodesic
of M, M rolls along a straight line of R, and vectors
which are parallel (in the mapping, i.e. in the euclidean
sense) are mappings of parallel vectors (on M, i.e. in
the Riemannian sense).

Of course, if all the possible paths of M could be
rolled down on the same Euclidean manifold in a
one-to-one mapping, we would have complete iso-
metry, and we would say that M is developable on R ;.
But this is not the general case.

Now consider a fixed infinitesimal closed path C
on M ; this path being small is defined at a particular
point P of M (for example P is a particular point on C)
and is perpendicular to a given direction v, of director
cosines «; in some local frame of coordinates. When
rolling M on R; along C, from P to P, one obtains in
general an open path, and any frame of reference
attached to P and followed by parallel transport is
rotated at the end of the path by an angle

Q = Ko 2)

o is the small area enclosed by the loopon M ; Kis a
finite quantity called the sectional curvature; the
displacement of P reads

D=Qi 3

where A is the diameter of C.

Clearly, the displacement D is second order, the
rotation first order. What we have created in R;
is a disclination of strength Q, centered on some point
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interior to C, because this operation, defined here at
a point, can be extended (with the same strength Q),
to a closed line (the standard interpretation of
Bianchi’s identities is that disclination lines are loops).
The mapping M — Rj; is isometric along C, but is not
closed. We close it by inserting some matter in the
void (if K is positive), or removing some extra matter
(if K is negative). Of course such extra matter, which
is unambiguously defined in M, needs to be mapped
in its own way on R, and this operation will certainly
perturb the distances between atoms. But, as long as A
is small, this is a small perturbation.

Finally, the entire mapping M — R; can be achieved
by creating in M three families of disclination densities,
in 3 orthogonal directions, defined by rotation vectors
per unit area

w; = Kji o; (C))

K;; is the tensor of curvature, K = w; «; the already
defined sectional curvature. This very special kind of
mapping (by disclinations) can be approached by
finite disclinations, whose strengths would correspond
to the elements of rotational symmetry of the regular
lattice of atoms on the Riemannian manifold M.
It is therefore not unique.

5. The choice of M. — In the case of small aggre-
gates, M = S, adorned with a { 3, 3, 5 } honeycomb,
appears as a good candidate, but the mapping we
used is not in the disclination mode. Note moreover
that, if we performed such a mapping by disclinations,
it would lead to an euclidean medium with z > 12,
because the sectional curvature K is positive for any
direction (and isin fact constant, K = + 1 is the radius
of the sphere and S; has constant curvature). This is
not realistic. Hence other honeycombs, for example
{3,3,3} or {3,3,4}, or eventually non-regular
lattices with coordination number z < 12, should be
preferred for the disclination mode. If so, the overall
obtained material would have to be defined by linear
and surface defects, altogether. This would be a very
complex picture of an amorphous material. Let us
investigate other possibilities.

There is of course a great physical interest in
choosing for M a space of constant (sectional) cur-
vature. Such a space shares with the euclidean space
(of zero curvature) many properties; a) There is a
continuous group G of isometries depending on
6 parameters under which such a space is invariant.
It is the euclidean group E; for R;. b) This implies
properties of isotropy and homogeneity : any object
drawn on a space of constant curvature can be moved
without deformation in any direction, and turned to
any orientation ; ¢) Such a space can bear a regular
lattice of points (with a pattern eventually) which is
invariant under a subgroup H of G. For the euclidean
space there are 230 such space groups, or Schonflies
group ; d) One can define, in such a lattice, defects
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in exactly the same way as in R, i.e. by the homotopy
groups [13] IIn(G/H) but also, because we have a
group G of rigid displacements, by the Volterra
process.

Hence mapping a space of constant curvature in R,
as isometrically as possible consists in introducing a
number of disclination lines in M, whose individual
strength is related to the relevant Volterra process,
and whose total strength counterbalances, as in eq. (2),
the curvature of the planar section to which they are
perpendicular. Then the mapping M — R; can be
made one-to-one and practically isometric.

Now, since we have already discussed the 3d
spherical space, we are left with the only other possi-
bility, viz. the simply connected 3d hyperbolic space
of constant negative curvature K = — 1. This space
(let us call it H;) is diffeomorphic to R ; hence it is
possible to devise a one-to-one mapping between
them. Finally, since K is negative, any mapping in the
disclination mode decreases the coordination number.

If this model of amorphous materials is correct,
their ground state is defined by a density of disclination
lines which approaches (in the sense of eq. (2)) the right
curvature contribution necessary to fill the gap bet-
ween K= —1 and K= 0. The choice of these
disclinations is submitted to the condition that the
rest of the mapping (the non-isometric part which
brings elastic distortions to the medium) optimizes
the energy.

6. Disclinations. — It therefore appears that Rivier’s
idea of looking for the existence of well individualized
closed lines is physically correctly rooted. But are
they disclinations, and more of that, are they correctly
defined as being representatives of II,(E;) = Z, ?

Let us first assume that this is true. Hence, by some
process of recovery, they could anneal two by two.
In fact, since they are unpolar defects (because of Z,,
any line is equal to its antiline), as long as there are
more than two defects they anneal in this way, and
finally not more than one defect would subsist, which
eventually would disappear by self annealing. The-
refore, if one follows Rivier’s analysis to its end,
there would exist an ordered amorphous medium,
without defects, whose symmetry group is H = 1,
and which is globally invariant under any operation
of E,, the euclidean group. It is evident that such a
medium does not exist.

Therefore, if we still accept Rivier’s result i.e. that
the lines he has discovered are disclinations there
must be some strong impossibility to the annealing
of defects. This is so because the defects are classified
as elements of the homotopy groups of G(H;)/H.
This difficulty of annealing is not of topological
origin : since Hy; and R; are diffeomorphic, it is
perfectly feasible to consider a one-to-one mapping
of the process of annealing. But, after such an anneal-
ing, R; would not be tesselated by an ordered lattice,
since there is no one-to-one isometry between R;
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and H;. The energy of this undislocated phase would
be very high : the obstruction to the annealing of
defects is of thermodynamic origin, via an order
parameter which is non-euclidean. In the language of
groups of symmetry, this also means that the space-
groups of Hj are not isomorphic to any of the Schon-
flies groups.

Let us notice that the same arguments apply to
frustration in spin-glasses ; these defects have been
classified by Toulouse [8] as elements of IT,(SO(3)).
But this cannot be true, since otherwise it would be
possible to obtain, by motion of frustration lines and
their annealing, a ground state of a spin-glass without
frustration. Frustration must probably be classified
by homotopy elements of the quotient spaces of some
non-euclidean space.

After such an analysis, it is not too audacious to
establish a link between non-ordered media and phases
whose symmetry group is not a subgroup of
E; = G(R;). This conception should open new fields
of research in the domain of phase transitions.

Finally let us come back to a description of amor-
phous materials in terms of defects. Disclinations,
as we have seen, are thermodynamically necessary
(hence Rivier is right in giving this name to the closed
lines he has discovered); but other defects might
exist in the H;-hypothetical state, which would appear
as true defects by the one-to-one mapping : dislo-
cations (which would be here more safely called by a
specific name : disvections, since translations (trans-
vections) are not commutative in H;), wedge and twist
disclinations (these latter relaxed by disvections),
walls, configurations, etc... Note that wedge dis-
clinations are sufficient to achieve the mapping by
disclinations.

7. Conclusion, further comments. — i) We have
stressed that {3, 3,5} is a good candidate for tetra-
hedral packing. Since {3, 3, 5} is a honeycomb on
S;, an amorphous solid would therefore be a non-
homogeneous medium, made of small clusters. How-
ever the walls separating these clusters might be
energetically unstable towards a transformation in a
lattice of lines. This remains to be tested, experi-
mentally and theoretically.

{3,5,3} is an hyperbolic honeycomb : three ico-
sahedra around each edge, z = 20. By putting an
atom at the center of these icosahedra, and introducing
a number of disclinations, this can be a good candidate
also for tetrahedral packing. All nodes of this centered
{3,5,3} are not equivalent. Here too a detailed
study remains to be done. This glass would be homo-
geneous.

One might also expect that the various space
groups of H; might furnish models for covalent
glasses.

ii) The most striking aspect in our analysis is the
physical impossibility for disclinations to anneal
together. This implies that atoms are only slightly
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diffusive, and this might be related to the concept of
localization introduced by Anderson [14].

iii) Our analysis in terms of disclinations (for H;)
is just the opposite of the usual analysis, in which,
given an ordered medium (of Rj;) containing dis-
clinations, a curved space is attached to this disclinated
medium [15]. But this standard analysis is just a
convenient way of describing disclinations in a flat
space. On the contrary the physics of our curved space
is precisely contained in its curvature (its sign), and
in its space-group.

iv) An amusing consequence, at a cosmological
level, of our analysis, would be as follows. Consider an
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homogeneous isotropic system of particles in relative
uniform motion in an euclidean space according to
Hubble’s law, and assume that the law of composition
of velocities is the law of Einstein in special relativity.
It can be shown [10] that such a problem can be
reduced to the purely geometrical problem of cons-
tructing an homogeneous honeycomb in a space of
constant negative curvature H. Therefore if the (real)
space is euclidean, it is a mapping of H; : it must
probably contain a density of disclinations of the
lattice of galactic clusters. If it is not an euclidean
space, this density would be different, and its study
would reveal space curvature. But astrophysicists
might object to such a conclusion !

References

[1] Sapoc, J. F., DXMER, J. and GUINER, A., J. Non Cryst.
Solids 12 (1973) 46.

[2] FArGEs, J., Thesis (1978), Orsay.

FARGES, J., DE FErRAUDY, M. F., RAouULT, B. and TorcCHET, G.,

J. Physique 36 (1975) 62.

[3] PoLk, D. E., J. Non Cryst. Solids 5 (1971) 365.

[4] CHAUDHARTI, P. and TURNBULL, D., Science 199 (1978) 11.

[5] Fees TOTH, L., Regular figures (Pergamon Press) 1964.

[6] Rivier, N., Disclination lines in glasses, submitted to Philos.
Mag.

[7]1 HiLeerT, D. and CoHN-VOSSEN, S., Geometry and the Imagina-
tion (Chelsea Pub. Cy New York) 1952.

[8] TourLousk, G., Phys. Reports 49 (1979).

[9] TouLousg, G. and KLEMAN, M., J. Physique Lett. 37 (1976)
L-149.

[10] CoxeTER, H. S. M. and WHITROW, G. J., Proc. R. Soc. A 201
(1950) 417.

[11] ARNOL'D, V., Méthodes mathématiques de la mécanique classique
(Editions de Moscou) 1974.

[12] CARTAN, E., Legons sur la Géométrie des Espaces de Riemann
(Gauthier-Villars, Paris) 1963.

[13] K1EMAN, M., MicHEL, L. and Toulrousg, G., J. Physique
Lett. 38 (1977) L-195.

[14] ANDERSON, P. W., Phys. Rev. 109 (1958) 1492.

[15] BuByY, B. A., Prog. Sol. Mech. 1 (1960) 329.

Commission paritaire N° 59.024

© Editions de Physique 1979

Directrice de la Publication : Jeanne BERGER

Imprimé en France. — Imprimerie JOUVE, 17, rue du Louvre, 75001 PARIS
Dépot légal : 4¢ trimestre 1979



