Optogalvanic detection of barium high-lying levels with a two-step pulsed laser excitation
P. Camus, M. Dieulin, C. Morillon

To cite this version:
P. Camus, M. Dieulin, C. Morillon. Optogalvanic detection of barium high-lying levels with a two-step pulsed laser excitation. Journal de Physique Lettres, 1979, 40 (19), pp.513-517. <10.1051/jphyslet:019790040019051300>. <jpa-00231677>

HAL Id: jpa-00231677
https://hal.archives-ouvertes.fr/jpa-00231677
Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Optogalvanic detection of barium high-lying levels with a two-step pulsed laser excitation

P. Camus, M. Dieulin and C. Morillon
Laboratoire Aimé-Cotton, C.N.R.S. II, Bâtiment 505, 91405 Orsay, France

(Reçu le 11 juillet 1979, accepté le 17 août 1979)

Résumé. — Les niveaux très élevés du baryum neutre ont été explorés en utilisant une excitation laser pulsée à deux étages avec une détection optogalvanique. On excite les atomes à partir des niveaux métastables 5d 6s 3D1,2,3, peuplés par une décharge dans une vapeur du type heat-pipe. On atteint les configurations 5dn1 paires par l'intermédiaire des niveaux de la configuration 5d 6p. Des niveaux ayant des valeurs de J comprises entre 0 et 5 peuvent ainsi être observés. On présente les résultats préliminaires.

Abstract. — Highly excited levels of neutral barium have been investigated by using a two-step pulsed laser excitation combined with an optogalvanic detection. The excitation process starts from the 5d 6s 3D1,2,3 metastable levels that are populated in a heat-pipe discharge. It leads to the even parity 5dn1 configurations via the 5d 6p intermediate levels. Levels with J values ranging from 0 to 5 can be observed. Preliminary results are given.

Until now observations of highly excited levels in multiphoton or multistep spectroscopy have been generally limited to processes starting from the ground state. In a two-photon or a two-step process, the investigation is limited to upper levels with \(J, J \pm 1, J \pm 2 \) values, where \(J \) is the angular momentum quantum number for the ground state. In barium the ground level has a \(J = 0 \) value, so with a two-photon process the investigation is limited to upper levels with \(J = 0 \) or 2, and with a two-step process to upper levels with \(J = 0, 1 \) or 2. In order to extend the \(J \) range, processes using more than two photons or two steps are needed. But the experimental arrangement becomes more complex, and particularly the analysis of the recordings obtained is not so obvious owing to the increasing number of multistep processes that occur simultaneously.

Under these conditions, further investigations are needed with optical transitions from excited levels populated by a non optical process. A glow discharge provides an easy way to populate several excited levels. In this case, transitions from these levels to various upper levels can occur, thus we can obtain a large range of \(J \) values.

Resonant optical transitions in a discharge can be detected by means of the optogalvanic effect. It is well known that irradiation of a gas discharge with a laser, tuned to an atomic transition occurring within the discharge, produces impedance changes that can be detected as changes in the potential across the discharge tube [1, 2, 3, 4]. Recent applications of this effect have been reported; for most of them, modulated c.w. laser excitation is used.

In our experiment with barium, we carry out a two-step excitation process, starting from metastable levels, with a pulsed dye laser excitation, and we detect the transient optogalvanic signal in a heat-pipe discharge cell. With these techniques, we plan to extend our previous observations with barium [5] to other \(J \) values and configurations.

The experimental arrangement is shown in figure 1. A Molelectron UV-1 000 nitrogen pulsed laser is used.
to pump two similar dye lasers, with a 15 Hz repetition rate. The pulse duration is about 7 ns and the laser linewidth is 0.3 cm$^{-1}$. The two dye laser beams are passed through a cylindrical heat-pipe discharge tube as previously described by P. Camus [6] (for convenience the two beams counter propagate axially through the tube).

The discharge tube has an 8 mm internal diameter and an active length of nearly 180 mm. Helium is used as a buffer gas. The barium vapour is contained in a stainless steel pipe, 155 mm long, in a vapour pressure range of 2.3-2.7 T (corresponding to temperatures between 905 and 935 °C). Thus stable discharges have been obtained with a constant potential of 1.45 kV applied across the tube and a 51 kΩ ballast resistor. Under these conditions the tube operates at 20 mA-400 V.

The a.c. component of the potential across the tube is coupled to an oscilloscope and simultaneously to an electronic recording device, through a 6 800 pF blocking capacitor and a band-pass active filter. The filter has a 110 kHz central frequency and a 90 kHz bandwidth. Its gain for the optogalvanic signals, we usually observed, is about 17.

The first dye laser is tuned to the first step transition. The wavenumber of the second varies in order to explore highly excited levels in the discrete and self-ionized regions. (For calibration, a small part of the dye laser beam is passed through a Fabry-Perot interferometer.)

When interacting with the pulsed dye laser tuned to an atomic transition, the perturbed discharge returns to its previous steady state by a transient optogalvanic response as shown in figure 2. We observe such signals for transitions occurring either in barium or in helium. The shape of the optogalvanic signal probably arises from the characteristics of the electric circuit on the one hand, and from induced changes in the discharge internal impedance on the other hand, corresponding to rearrangements between the populations of excited levels. This oscillating shape varies with the interacting element, helium of barium, and slightly with the transition involved.

Peak amplitude detection has been chosen: the signal is taken as the potential at the first extremum (see for example figure 2, which gives a negative signal corresponding to a drop in the potential across the tube). It seems to us that this signal reproduces with sufficient accuracy the population changes induced, that is to say, that, in this way, line heights are nearly proportional to the laser peak power and oscillator strength of the transition involved.

The instrumental linewidth is determined from the dye laser linewidth, approximately 0.3 cm$^{-1}$, which is wider than the Doppler width (0.06 cm$^{-1}$). The sensitivity of the detection is limited by discharge noise to 3.5 mV. In practice, our electronic device limits the input signal to 1 V, so the dynamics range of detection is about 300. But this is not a fundamental limitation, the intrinsic optogalvanic signal dynamics range can probably reach 10^4-10^5. A well adapted electronic system will be used in our future experiments.

In the discharge, the metastable levels 6s 5d 3D$_{1,2,3}$ are well populated, compared to other excited levels, and give rise to strong optogalvanic signals when optical resonant transitions involve one of them. In order to observe highly excited levels of 5dnl configurations, we perform a two-step excitation process starting from the 6s 5d 3D metastable levels via intermediate levels of the 5d 6p configuration (see figure 3).

Since we can choose intermediate levels with J values ranging from 0 to 4, even levels belonging to 5dns and 5dnd can be observed with J values equal to 0, 1, 2, 3, 4 or 5; that is to say, all levels of 5dns and 5dnd configurations are liable to observation considering the J selection rule alone.

Fig. 2. — Optogalvanic signal occurring for a barium resonance. The calibrations are: vertical 500 mV/division, horizontal 5 μs/division.

Fig. 3. — Barium levels diagram.
Moreover, we can discriminate the two-step excitation process from any other process by comparing two spectra: one recorded without first step excitation, the other recorded with two-step excitation. The lines that appear alone or that are strongly enhanced in the two-step spectra correspond to transitions from 5d 6p to 5dnl, as shown in figure 6.

In this way, we have observed several highly excited levels in the energy region of the 5d 7d configuration, which is close to the 6s 2S1/2 first limit

$$\sigma = 42,035.05 \text{ cm}^{-1},$$

and in the energy range just below the 5d 2D3/2, 5/2 limits

$$\sigma(2D_{3/2}) = 46,908.9 \text{ cm}^{-1},$$

and

$$\sigma(2D_{5/2}) = 47,709.9 \text{ cm}^{-1}.$$

In the discrete spectrum close to the first limit, the 5d 7d levels appear as perturbators of the 6snl series. Therefore, a few members of the 6snl series are observed only in the vicinity of the perturber; transitions from 5d 6p to 6snl are not observed elsewhere owing to the excitation of two electrons.

The most important process is configuration mixing (5d 7d + 6snl), the highest line intensities involve 6snl levels. Figure 4b shows the spectrum obtained in the region of the 5d 7d 1D2 level with the perturbed members of the 6snld 3D1 series, that we have previously observed [5]. In this case, the second step transition occurs from the 5d 6p 3P2 level. The increase and decrease in line intensity can be seen on both sides of the perturber; the maximum intensity is observed for n = 26 and 27 members. Moreover, this observation closely corresponds to the admixture of the 5d5/2 nd3/2 channel given in the MQDT study of the J = 2 levels [7].

This phenomenon is quite useful to identify at the same time as some recently observed perturbators and perturbed series members. The observation of many spectra with different intermediate 5d 6p levels and comparisons between them, give the energy of the levels, using the Ritz's principle, and their J value according to the selection rule.

Figure 5b shows a small part of the spectrum obtained with 5d 6p 3P0 as the intermediate level, and several lines observed leading to the determination of unknown energy levels. The strongest lines observed in the vicinity of the 5d 7d J = 1 level correspond to transitions from 5d 6p 3P0 to 6s 19s 3S1, and 6s 20s 3S1, and to one transition from 5d 6p 3P3 to 6s 18d 3D1. In the table, observed wavenumbers and intensities are given for these transitions observed in three different spectra, obtained with 5d 6p 3P0, 3P1 and 3P2 intermediate levels. The observations of several upper levels belonging to the 6snn 3S1 and 6snn 3D1 series have been extended to n values between 19 and 41, and between 17 and 36 respectively.

![Fig. 4. - Two-step optogalvanic spectrum of barium. a) Fabry-Perot fringes, \(\Delta \sigma = 1.314 \pm 0.066 \text{ cm}^{-1} \); b) Spectrum of Ba with the 5d 6p 3P2 intermediate level in the range 6 294-6 315 Å.](image-url)
Table I. — New observed transitions in barium occurring in a two-step excitation process via three intermediate levels of the 5d 6p configuration.

<table>
<thead>
<tr>
<th>5d 6p 3P_{0}^0</th>
<th>5d 6p 3P_{1}^1</th>
<th>5d 6p 3P_{2}^{(*)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>New even levels observed and their average energies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6s 19s 3S_{1}</td>
<td>41 527.08 cm^{-1}</td>
<td>15 885.10 S</td>
</tr>
<tr>
<td>6s 18d 3D_{1}</td>
<td>41 558.97 cm^{-1}</td>
<td>15 916.87 VS</td>
</tr>
<tr>
<td>5d 7d J = 1</td>
<td>41 570.24 cm^{-1}</td>
<td>15 928.23 VVS</td>
</tr>
<tr>
<td>6s 20s 3S_{1}</td>
<td>41 592.74 cm^{-1}</td>
<td>15 950.56 VS</td>
</tr>
</tbody>
</table>

w : weak
m : medium
S : strong
V : very

Intensities of the lines.

(*) The 5d 6p 3P_{2}^{(*)} intermediate level has been populated by dye laser fluorescence.

Another perturbator level 5d 7d J = 1 is obtained [σ = 41 930.87 cm^{-1}] located between 6s 36s 3S_{1} and 6s 37s 3S_{1} and also between 6s 35d 3D_{1} and 6s 36d 3D_{1}.

Moreover, two 5d 7d J = 3 levels have been recently observed and identified:

σ_{1}(5d 7d J = 3) = 41 459.23 cm^{-1}
σ_{2}(5d 7d J = 3) = 40 972.82 cm^{-1}.

They perturb the 6s6d 3D_{3} series, members of which have been observed, for the first time, for n ranging from 11 to 17. Many other highly excited levels have also been observed in this region; some of them are identified, but the complete analysis is in progress.

In the self-ionized region we have undertaken the observation of the 5dns and 5dnd Rydberg series, close to the 5d 2D_{3/2,5/2} limit. Figure 6 shows part of the observed spectrum, where the second step transition occurs from the 5d 6p 3P_{0}^{0} intermediate level. The comparison of two spectra, one with, and the other without the first step, shows clearly that several lines appear when the first step is applied. The observation of the self-ionized region, from 6s 2S_{1/2} up to 5d 2D_{3/2,5/2} is currently under way.

Our observations are complementary to those recently made by Wynne et al. [8] with a two-step experiment using a thermoionic diode, for transitions...
OPTOGALVANIC PULSED LASER SPECTROSCOPY IN BARIUM

from the $6s^2 \, 1S_0$ ground state via the $5d \, 6p \, 1P_1$ intermediate level. The investigation of highly excited states in an excited discharge with optogalvanic detection is obviously a very powerful and fruitful method. For example the observation of $J = 5$ levels in a conventional multistep excitation process from the ground state would need no less than five steps. Beside those with two dye lasers, any level of the $5dns$ and $5dnd$ configurations in barium can be observed using optogalvanic detection spectroscopy provided the oscillator strengths are not too small. However, with the high peak power of the dye laser and the sensitivity of the optogalvanic detection, very weak transitions can be observed.

We plan to obtain a complete description of the $5dns$ and $5dnd$ configurations; for this purpose, we are extending our experimental observations, and the analysis of the spectra is in progress.

References