Viscosity, hard sphere diameter and interionic potential for liquid lead
G. Chaussemy

To cite this version:

HAL Id: jpa-00231641
https://hal.archives-ouvertes.fr/jpa-00231641
Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Viscosity, hard sphere diameter and interionic potential for liquid lead

G. Chaussemy

Laboratoire de Physique Electronique, Université Claude Bernard, 43, boulevard du 11 novembre 1918, 69000 Villeurbanne, France

(Reçu le 13 février 1979, révisé le 14 mai 1979, accepté le 30 mai 1979)

Abstract. — The Macedo-Litovitz equation for a hard sphere liquid provides a satisfactory model for the viscosity of lead up to 1 400 K. The packing fraction at the melting point ($\eta_m = 0.472$) and the $T^{1/2}$ temperature dependence of the hard core size $\sigma$ are in good agreement with other results deduced from Enskog’s theory and molecular dynamics. The activation energy for viscosity (0.07 eV) is similar to the height of the interionic potential barrier calculated from the correlation functions determined by means of neutron diffraction, and the Percus-Yevick theory.

1. Introduction. — Transport properties of high density liquids can be satisfactorily described in the framework of the hard sphere model by using a corrected Enskog’s theory [1-3]. The hard core size $\sigma$ is close to intermolecular distances obtained from neutron diffraction measurements [4, 5]. For liquid metals the temperature dependence of $\sigma$ is simply correlated with the interionic potential as shown by Protopapas et al. [6-8].

A more phenomenological approach to transport properties in liquids is the free volume formalism [9-12]. Macedo-Litovitz [13] and Chung [14] have reconsidered this formalism and proposed a hybrid equation for viscosity by using simple considerations concerning the interionic potential barrier. Both theories [9, 10, 13, 14] are of great interest to account for the viscosity of non associated or associated liquids, such as glass forming liquids [15, 16] and polymers [13, 17, 18]. In this paper the Arrhenius behaviour of kinematic viscosity for pure lead is well described up to 1 400 K by a hard sphere model using both the Macedo-Litovitz equation and a temperature dependent hard core size $\sigma$. The values of $\sigma$ and the height of the interionic potential barrier $\epsilon^*$ are in good agreement with the results derived from neutron diffraction data [19].

2. Model. — 2.1 Interatomic potential and hard core size. — Figure 1 gives a schematic representation of interionic potential $\phi(r)$. The temperature dependence of $\sigma$ is well described by eq. (1) assuming that $\phi(r)$ is parabolic near $r_0$ and $kT$ is small [6]:

$$\sigma = \sigma_0 \left\{ 1 - B \left( \frac{T}{T_m} \right)^{1/2} \right\}$$

$T_m$ melting temperature.

Fig. 1. — Schematic representation of the interionic potential $\phi(r)$ used in paragraph 2.1.
The hard sphere diameter $\sigma$ is the average distance of closest approach for repulsive collisions in the fluid [6]. If $p(E) \, dE$ denotes the probability of finding an atom with energy in the interval $E, E + dE$, we can write in the classical limit and in the case of a parabolic well [14]:

$$p(E) \, dE = \left(\frac{1}{2} kT\right) \left(\frac{E}{kT}\right)^2 \exp\left(-\frac{E}{kT}\right) \, dE. \quad (2)$$

2.2 SELF-DIFFUSION COEFFICIENT. — If $p(v) \, dv$ is the probability of finding a free volume between $v$ and $v + dv$ [9]:

$$p(v) \, dv = \left(\frac{v}{v_F}\right) \exp\left(-\frac{v}{v_F}\right) \, dv \quad (3)$$

$v_F$ is the mean free volume and $\gamma$ a coefficient, arbitrarily taken equal to unity.

Diffusion in liquids is governed by two simultaneous events:

1) The presence of an adjacent free volume of size greater than $v^*$. 

2) The acquisition of energy surpassing a critical value $e^*$ by the diffusing atom.

The self-diffusion coefficient $D$ given by Turnbull in reference [15] can be rewritten in the following manner:

$$D = \frac{1}{3} \frac{\gamma}{v_F} \frac{1}{kT} \int_{v_0}^{v^*} \int_{e^*}^{\infty} v \, p(E) \, dE \, p(v) \, dv \quad (4)$$

assuming: (i) The displacement $a$ of an ion is a linear function $a = av$ of the free volume $v$, (ii) the ions move with the gas kinetic velocity $u$.

By integrating eq. (4) gives:

$$D = \frac{1}{3} \frac{\gamma}{v_F} \left(\frac{v_F}{v_F}\right) \left(\frac{1}{2} \left(\frac{v_F^*}{kT}\right)^2 + \left(\frac{e^*}{kT}\right) + 1\right) \times$$

$$\exp -\left(\frac{\gamma v_F^*}{v_F} + \frac{e^*}{kT}\right). \quad (5)$$

Let $\zeta$ be the packing fraction of the hard sphere fluid. $v_m$ denotes the mean molecular volume and $v_m$ is the value of $v_m$ for $\zeta = \zeta_0 = 0.74$ (hard packing). Assuming $v_F = v_m - v_m$ and $v^* = v_m$, eq. (5) is rewritten in the following form:

$$D = \frac{1}{18} \alpha \pi \sigma^3 \left\{\frac{1}{2} \left(\frac{e^*}{kT}\right)^2 + \left(\frac{e^*}{kT}\right) + 1\right\} \times$$

$$\exp -\left\{\frac{\zeta}{\zeta_0 - \zeta} + \frac{e^*}{kT}\right\}. \quad (6)$$

2.3 VISCOSITY. — For a hard sphere dilute gas [20]:

$$D = 1.019 \frac{3}{8} \pi \sigma^2 \left(\frac{kT}{\eta \sigma}\right)^{1/2}. \quad (7)$$

Eq. (7) is identical in the limit $\zeta \to 0$ and $e^* \to 0$ to eq. (6). Then the value for $\alpha$ is: $0.405 \frac{3}{\sigma^2}$.

The assumption $a = \alpha v$ is strictly valid only for dense fluids ($v \to 0$), consequently this estimation for $\alpha$ is only a rough approximation.

For spherical molecules, the Stokes-Einstein relationship is valid:

$$\frac{\eta D \sigma}{kT} = C \quad (8)$$

where $C$ is a constant. ($C = 1/2 \pi$ for liquid metals [7]) and $\eta$ is the shear viscosity coefficient.

The kinematic viscosity is expressed by:

$$v = \frac{\eta}{d} = \frac{A^{1/2}}{\left[1 + \left(\frac{e^*}{kT}\right) + \frac{1}{2} \left(\frac{e^*}{kT}\right)^2\right]^{1/2}} \times$$

$$\exp\left[\frac{\zeta}{\zeta_0 - \zeta} + \frac{e^*}{kT}\right] \quad (9)$$

$A = 0.406 \times 10^{-4}$ for lead, $d$ is the density.

3. Results and Discussion. — 3.1 Results. — The kinematic viscosity $v$ of liquid lead was measured with a Meyer Schvidkovskii torsional oscillating cup viscometer. The absolute value of $v$ was determined with an estimated error of 10% but for the temperature dependence of the viscosity the relative precision is 2%. In the range of measurements from melting point to 800 °C our results are similar to those in references [3] and [7] (Fig. 2).

![Fig. 2. Experimental values of kinematic viscosity $v$ for liquid lead as a function of $1/T$. The straight line corresponds to the Arrhenius law $v = v_0 \exp(W/kT)$ with an apparent activation energy $W = 0.07 \, eV$.](image-url)
Table I. — \( \nu_{\text{exp}} = \) experimental values of kinematic viscosity of figure 1; \( \nu_{\text{calc}} = \) kinematic viscosity calculated with eq. (9); \( \sigma_{\text{calc}} = \) hard sphere diameter deduced from eq. (1); \( \zeta = \) packing fraction used in eq. (9).

<table>
<thead>
<tr>
<th>( T (\degree \text{C}) )</th>
<th>( \nu_{\text{exp}} = \nu_{\text{calc}} (\text{cS}) )</th>
<th>( \zeta )</th>
<th>( \sigma (\text{Å}) )</th>
<th>( \sigma_{\text{calc}} (\text{Å}) )</th>
<th>( \frac{\sigma - \sigma_{\text{calc}}}{\sigma} \times 10^3 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>327</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>340</td>
<td>0.215</td>
<td>0.465</td>
<td>3.061</td>
<td>3.065</td>
<td>- 1.4</td>
</tr>
<tr>
<td>400</td>
<td>0.192</td>
<td>0.451</td>
<td>3.037</td>
<td>3.036</td>
<td>+ 0.5</td>
</tr>
<tr>
<td>450</td>
<td>0.174</td>
<td>0.438</td>
<td>3.014</td>
<td>3.012</td>
<td>+ 0.7</td>
</tr>
<tr>
<td>500</td>
<td>0.160</td>
<td>0.425</td>
<td>2.990</td>
<td>2.989</td>
<td>+ 0.3</td>
</tr>
<tr>
<td>550</td>
<td>0.150</td>
<td>0.414</td>
<td>2.970</td>
<td>2.967</td>
<td>+ 1.1</td>
</tr>
<tr>
<td>600</td>
<td>0.141</td>
<td>0.403</td>
<td>2.950</td>
<td>2.946</td>
<td>+ 1.5</td>
</tr>
<tr>
<td>650</td>
<td>0.132</td>
<td>0.390</td>
<td>2.924</td>
<td>2.925</td>
<td>- 0.2</td>
</tr>
<tr>
<td>700</td>
<td>0.127</td>
<td>0.381</td>
<td>2.908</td>
<td>2.905</td>
<td>+ 1.1</td>
</tr>
<tr>
<td>750</td>
<td>0.121</td>
<td>0.370</td>
<td>2.886</td>
<td>2.885</td>
<td>+ 0.3</td>
</tr>
<tr>
<td>800</td>
<td>0.116</td>
<td>0.360</td>
<td>2.866</td>
<td>2.866</td>
<td>0.0</td>
</tr>
<tr>
<td>850</td>
<td>0.111</td>
<td>0.348</td>
<td>2.840</td>
<td>2.847</td>
<td>- 2.5</td>
</tr>
<tr>
<td>900</td>
<td>0.108</td>
<td>0.339</td>
<td>2.821</td>
<td>2.828</td>
<td>- 2.6</td>
</tr>
<tr>
<td>950</td>
<td>0.105</td>
<td>0.331</td>
<td>2.805</td>
<td>2.810</td>
<td>- 1.9</td>
</tr>
<tr>
<td>1 000</td>
<td>0.103</td>
<td>0.323</td>
<td>2.788</td>
<td>2.793</td>
<td>- 1.5</td>
</tr>
<tr>
<td>1 050</td>
<td>0.101</td>
<td>0.316</td>
<td>2.774</td>
<td>2.775</td>
<td>- 0.4</td>
</tr>
<tr>
<td>1 100</td>
<td>0.100</td>
<td>0.310</td>
<td>2.763</td>
<td>2.758</td>
<td>+ 1.6</td>
</tr>
<tr>
<td>1 150</td>
<td>0.099</td>
<td>0.304</td>
<td>2.751</td>
<td>2.742</td>
<td>+ 3.5</td>
</tr>
</tbody>
</table>

(*) The packing fraction and the hard core size at the melting point are extrapolated.

340 °C the temperature dependence of \( \sigma \) agrees well with eq. (1) written in the following form:

\[
\sigma_{\text{calc}} = 3.68 \left( 1 - 0.166 \left( \frac{T}{600} \right)^{1/2} \right) \quad T_m = 600 \text{ K}.
\]

As shown in table I, \( \sigma - \sigma_{\text{calc}} \) does not exceed 0.25 % up to 1 100 °C. The variation of \( \sigma \) in the range of measurements is approximately 10 %, then the subsequent precision in the agreement with eq. (1) is about 2.5 %.

3.2 DISCUSSION. — Previously, using total and direct correlation functions obtained from neutron diffraction experiments North et al. [19] have calculated a Percus-Yevick interionic pair-potential. Assuming \( \sigma_0 \) is the position of the potential well and \( \epsilon^* \) the height of the potential barrier our results are in very good agreement with [19].

By comparing \( \sigma \) with \( r_{\text{max}} \), the first peak position of radial distribution function [19] as shown in Table II we found 0.9 for \( \sigma/r_{\text{max}} \) at 340 °C. This value has been observed for other liquids and salts at the melting point [5], and considered as an indication of a relation between \( \sigma \) and mean spacing of short-range order.

The temperature dependence of \( \sigma \) is consistent with the hypothesis of paragraph 2.1 and reference [6].

The packing fraction \( \zeta_m = 0.472 \) at the melting temperature corresponds to the usual assumptions for liquid metals [6, 7, 21] and fits very well Lindemann's law [22, 23].

For \( B \) in eq. (1) Protopapas et al. [6] predicted a value equal to 0.112 for all metals, we found 0.166. The difference is about 50 % but only 6 % for \( \sigma_0 \).

The precision \( \Delta \zeta/\zeta \) on the calculated packing fraction which results from the experimental error \( \Delta \nu/\nu = 10 \% \) mentioned above is 2 % at 340 °C and 6 % at 1 100 °C, but the corresponding precision \( \Delta \sigma/\sigma \) is only 1/3 \( \Delta \zeta/\zeta \). For a given value of \( \epsilon^* \) the effects of \( \Delta \nu/\nu \) on the preceding discussion are small: viscosity is very sensitive to variations of the hard core size. However, at 340 °C for the value \( \zeta = 0.465 \), the relative variation \( \Delta \epsilon^*/\epsilon^* \) giving rise to \( \Delta \nu/\nu = 10 \% \) is about 30 %: viscosity is less sensitive to variation of \( \epsilon^* \), if \( \epsilon^* \) is small.

4. Conclusion. — The model gives a simple connection between viscosity and interionic pair potential. Both for non associated and associated liquids, viscosity measurements provide a practical method for investigating interatomic forces. For lead the agree-
ment with other observations is quite satisfactory and the $\varepsilon^*$ and $\zeta_m$ values present some physical interest. However the choice of $\varepsilon^*$ and $\zeta_m$ acting as adjustable parameters for viscosity, is not sufficiently critical and must be completed with data given by other experiments such as neutron diffraction.

References

miet Leningrad, 1976.
[21] FABER, T. E., Introduction to the theory of liquid metals (Cam-
bridge at the University Press) 1972.