Erratum : Critical indices to $O(1/n^2)$ for a three dimensional system with short range forces
I. Kondor, T. Temesvári

To cite this version:
I. Kondor, T. Temesvári. Erratum : Critical indices to $O(1/n^2)$ for a three dimensional system with short range forces. Journal de Physique Lettres, 1978, 39 (21), pp.415-415. <10.1051/jphyslet:019780039021041500>. <jpa-00231531>

HAL Id: jpa-00231531
https://hal.archives-ouvertes.fr/jpa-00231531
Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
After our paper had been published, we received a letter from Y. Okabe pointing out a discrepancy between our results and those obtained by him, in collaboration with M. Oku, for the critical indices $\beta$, $\gamma$ and $\nu$ at $d = 3$, $T \neq T_c$ from the expansion to $O(1/n^2)$ of a (discrete) $n$-vector model with short range forces. Checking our calculation once more we discovered a pair of related errors, one in an irreducible polarization diagram, the other in its corresponding vertex graph, which led to incorrect values for the indices $\lambda$ and $\mu$, without violating the scaling law between them.

The correct second order terms are
\begin{align*}
\lambda_2 &= \frac{64}{n^2 \pi^4} \left( \frac{16}{27} - \pi^2 \right), \\
\mu_2 &= \frac{32}{n^2 \pi^4} \left( \frac{32}{27} - \pi^2 \right),
\end{align*}
whence the corrections for other indices
\begin{align*}
\alpha_2 &= -\frac{96}{n^2 \pi^4} \left( \frac{112}{27} - \pi^2 \right), \\
\beta_2 &= \frac{16}{n^2 \pi^4} \left( \frac{8}{3} - \pi^2 \right), \\
\gamma_2 &= \frac{64}{n^2 \pi^4} \left( \frac{44}{9} - \pi^2 \right) \quad \text{and} \quad \nu_2 = \frac{32}{n^2 \pi^4} \left( \frac{112}{27} - \pi^2 \right)
\end{align*}
follow through scaling laws. The last three are in agreement with the direct calculation by Okabe and Oku.

The difference from our earlier results is not too large (of the order of a few per cent for $n = 3$) and does not modify the conclusion that a direct comparison between the accepted exponent values and those obtained from $1/n$ expansion is meaningless for small $n$'s.

We are grateful to Dr. Okabe for informing us about the discrepancy and also for sending us his papers prior to publication.