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Résumé. 2014 On montre que l’accroissement de la constante diélectrique statique 03B5 des halogénures
alcalins avec la température est exclusivement dû à des effets d’anharmonicité. On donne une formule
simple qui permet le calcul de s à toute température si l’on connait : (i) 03B5 à la température ambiante
et (ii) les variations thermiques du module de compression et du paramètre de réseau. On discute en
outre l’explication avancée par Flynn de la grande entropie de formation des défauts de Schottky.

Abstract. 2014 It is shown that in alkali halides the increase of the static dielectric constant 03B5 with
temperature is exclusively due to anharmonic effects. A simple formula is given which permits the
calculation of 03B5 at any temperature if we know : (i) the dielectric constant at room temperature and
(ii) the thermal variation of bulk modulus and of the lattice parameter. Furthermore Flynn’s explana-
tion for the high formation entropy per Schottky defect is discussed.
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Experiments show that in alkali and silver halides
the static dielectric constant G increases rapidly with
temperature [1, 2]. It was initially thought that this
temperature dependence could be attributed to orient-
ed dipoles of the Debye type. However, after a

careful analysis of the experimental values, by separat-
ing the contribution due to permanent dipoles, a

strong increase of G with temperature (30-40 % up
to the melting point Tm) remained. This dependence
is usually given in the literature in the form [3, 4]

(C1, C2 constants and E thermal activation energy
of the order of some hundreds of eV), or in a poly-
nomial form [4, 5] of 3rd order.

Recently, Flynn [6] pointed out that the high
formation entropy s (~ 10 k) of a Schottky defect
in alkali halides can be explained if the above tempera-
ture dependence of G is taken into account.
The object of the present paper is to discuss the

above temperature dependence of s on a macroscopic
basis. We obtain a simple relation which permits the
calculation of G at any temperature if we know (i)
the dielectric constant at one temperature (for ins-
tance at R.T.), (ii) the temperature variation of

elastic constants, and (iii) the volume expansion coeffi-
cient. Although it is clear from the following procedure
that an accurate but very complicated theoretical

expression can be derived, we thought that, as a first
step, it would be better to give a simple formula which
can be used easily for various purposes. As an example
the knowledge of the function s = f (T ) is necessary
in order to handle accurately the Lidiard-Debye-
Hückel correction [7] in the analysis of the conductivity
or diffusion data of alkali and silver halides.

1. Theory. - When an ionic crystal A+ B - does
not contain permanent dipoles, such as divalent

impurity-cation vacancy pairs etc., its static dielectric
constant 8 has two sources : the electronic and the
ionic polarization. The classical Lorentz-Lorentz equa-
tion can be written as :

where a+, a- are the electronic polarizabilities of the
cation and anion respectively, a is the ionic polariza-
bility of the pair (A+, B-) and n is the number of
cations (or anions) per unit volume. If we denote by I
the lattice constant of the crystal it is clear that in a
NaCI-structure : n = 4//3 and thus Eq. (1) gives :
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If we plot the function -2 vs B, a hyperbola isp 

+ 2 
Yp

obtained which meets the horizontal axis at 8 = 1,
and tends to 1 when B -~ oo. For NaCI at R.T. we

s 2013 1
have [8] c = 5.93 and thus E 1 = 0.621. One sees~l e + 2
that a small variation of the right-hand side of Eq. (2)
leads to a large variation of the value of E ; for instance
if the right-hand side becomes 0.666, the value of 8
increases to 7.

Let us now consider the simplified case of a harmo-
nic solid. None of the terms (1) involved in the right-
hand side varies with the temperature and thus we
conclude that in the harmonic approximation B

seems to be roughly constant with the temperature.
We now consider the hypothetical case of an

anharmonic solid with expansivity but with polariza-
bilities (a+, a- and a) that do not change with tempe-
rature. From the definition of the volume expansion
coefficient we get :

where 10 corresponds to T = 0.
The value of the exponential term for T = Tm

is about 1.15 in the case of NaCI [9]. This means that
the second member of Eq. (2) decreases 15 % up to
Tm and thus we obtain B(T = Tm) = 4.52. This
is a decrease ofs by 30 % in comparison to R.T. value.
Therefore the assumption that all three polarizabi-
lities are temperature independent leads to a contra-
diction with experiments.
We now proceed to a consideration of the case

where all three polarizabilities change with T. An

appreciable change, however, of a+ and a- seems
to be precluded because of the well-known fact [10]
that the same value of the electronic polarizability
of an alkali or a halogen ion can be applied with
success to the calculation of the refractive indexes
of all alkali halides, in which the lattice constants

vary by up to 50 %. Therefore it is reasonable to assume
that the term a + + a _ remains almost unchanged in
comparison to a. We thus only have to examine the
temperature variation of the ionic polarizability a.

The ionic polarizability, in a first approximation [8,
11] is given by (2) :

where e is the electronic charge, f.1 is the reduced mass
and Wo the frequency of the transverse optical mode.

e) We assume that the electronic polarizabilities do not vary
with the temperature; see the following remarks in the text.

e) Formula (4) is an approximation because it neglects the
correction of Szigeti’s effective charge, etc. However, as will be
discussed below, this does not alter the conclusions of the present
paper.

It has been shown and has been confirmed experi-
mentally [12, 13] that in alkali halides with NaCI-
structure úJo can be expressed by :

where B is the bulk modulus. A combination of

Eqs. (4) and (5) gives :

Eq. (6) contains two parameters that change with the
temperature due to anharmonic effects. By comparing
the influence of I, which increases slightly with the
temperature (- 6 % up to Tm), with that of B which
decreases considerably with the temperature [14]
( ~ 50 % up to 7~), one concludes that the ionic

polarizability actually increases with T.
By inserting Eq. (6) into Eq. (2) we finally get :

where

Eq. (7) describes the temperature variation of 8

by taking into account the temperature variation of I
and B.

APPLICATION OF Eq. (7). - The constant included
in Eq. (7) can be determined by taking into account (i)
the constant (~ Z) introduced in Eq. (5) and (ii) some
Szigeti corrections [11] ; the latter are unfortunately
empirical. In the following, we avoid the determina-
tion of the constant in this way, which in any case
would be somewhat arbitrary. This can be done by
applying Eq. (7) to a temperature T1 (for instance at
R.T.), for which the values of B, I, B and A are well-
known, and thus determining the value of the cons-
tant directly. Eq. (7) can now give the value of 8
at any temperature. By following the above procedure
we finally get :

where the subscript 1 denotes the quantities measured,
for instance, at R.T., while ~, B and I denote the same

quantities at any desired temperature.
Eq. (8) contains only experimental quantities (3)

(3) A can easily be calculated from the refractive index i.e. :
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and thus can be checked directly. As an example we
apply it to NaCl. At 300 K we have [8,14] ~ = 5.93 (4),
A = 56.44 A3, 11 = 5.64 A and

The values of I are known from the expansivity
measurements of Srivastava and Merchant [9] whereas
the B values can be found from the relations :

where t is the temperature on the Celsius scale, and [14]

Column 4 of table I contains the values of 8, accord-

ing to Eq. (8) ; in column 5 we show the values of
B obtained from the formula [3, 4]

which fits the experimental data within 1 %. A compa-
rison of columns 4 and 5 shows that our calculated
values agree with the experimental results. Equally
good agreement is obtained for the other alkali
halides by using values of the bulk modulus (and its
temperature dependence) given in reference [15],
the expansivity values of Srivastava and Merchant [9]

TABLE I

(4) The values of 81 measured at R.T. vary from 5.87 to 5.93;
the selection of the value 5.87 instead of 5.93 lowers all the a values
included in the table by N 1 %.

the dielectric constants (at R.T.) given by Kittel [11]
and the refractive indices from Schulman and Comp-
ton [16] ; one obtains temperature dependences of the
dielectric constant that agree with the experiments
within 1.5 %.

2. Discussion and conclusions. - We have seen

that the increase of the static dielectric constant with

temperature is due to anharmonic effects. It seems

that whereas the electronic term (a+ + a_) remains
practically constant with temperature, the ionic
polarizability increases rapidly with T. Eq. (6) shows
that this temperature increase of a can be described

mainly by the rapid decrease of the elastic constants
with temperature. Due to the fact that the elastic
constants of a crystal are closely correlated to the
microscopic force constants [17-20], in reality, Eq. (6)
shows that the temperature increase of a is caused by
the volume dependence of these force constants i.e.

by the anharmonicity of the solid.
At very high frequencies, the right-hand side (due

to the ionic polarization) of Eq. (7) vanishes so that
the temperature variation of Boo is described by the
term ~4//~; therefore, roughly speaking, Boo decreases
slightly with the temperature due to anharmonic
effects. This is in agreement with the trend of the
experimental results.

Flynn [6] gave an equation that could calculate
the formation entropy s for a Schottky defect in
alkali halides from the temperature dependence of s.
It gave s-values in the correct range [21] 5-10 k.
The present paper shows that the increase of B with T
can be ascribed to the strong decrease of the elu,t ic
constants with temperature, in spite of the opposite
effect of the expansivity. Flynn’s result, therefore,
is evidence that the high s-values of alkali halides are
governed by these two effects. This coincides with
recent conclusions derived from a quite different

point of view [22, 23].
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