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Résumé. — Nous étudions théoriquement un cas particulier d’ionisation multiphotonique double-
ment résonnante. Plus précisément, nous considérons deux niveaux quasi résonnants avec deux
harmoniques successives de la fréquence du champ d’excitation. La méthode utilisée est fondée sur le
formalisme des opérateurs effectifs introduit initialement par Armstrong, Beers et Feneuille dans
I’étude de ce probléme. Le résultat le plus intéressant est de montrer la possibilité d’observer des
effets d’interférence importants sur les largeurs des courbes de résonance. Ce traitement nous est
I'occasion de préciser la relation entre le formalisme des opérateurs effectifs et la théorie des per-
turbations.

Abstract. — We investigate theoretically a particular case of doubly resonant multiphoton ioni-
zation. More precisely, we consider two levels quasi-resonant with two successive harmonics of the
field frequency. The method used is based on the effective operator formalism first introduced for
this problem by Armstrong, Beers and Feneuille. The main result is to show the possibility of obser-
ving large interference effects on the width of the resonances. Moreover this treatment allows us to
make more precise the connection between effective operator formalism and standard perturbation

theory.

1. Introduction. — In multiphoton ionization expe-
riments, resonances are observed [1] when some atomic
levels are quasi-resonant with some harmonics of the
field frequency. Two types of theoretical treatments
have been applied to this problem. The first approach
is based on the use of standard perturbation theory
with either a quantum [2] or a classical [1] description
of the field. The second starts from the model initially
introduced by Armstrong, Beers and Feneuille [3],
who describe resonances in term of effective operators.

Multiple resonances can occur, in particular when
some levels are approximately resonant with the same
harmonic of the electromagnetic field frequency.

In the latter case, one observes the interference bet-’

ween the various resonant paths consisting in a real
absorption of p photons, followed by a (n — p)-
photon photoionization. Multiple resonances appear
also in an other situation which occurs in noble
gases for example. One level is resonant with the p-
harmonic of the field frequency and an other one is
resonant with the (p + 1)-harmonic. When these
two levels are connected by a strong electric dipole
interaction, it is no longer possible to consider that
two independent quantum paths interfere.

An approach of this problem was recently given by
Faisal [4]. This author describes multiphoton ioni-
zation by a single quantum path process. Therefore,
his treatment can not describe all the atomic situations.

We reconsider this problem by taking into account
non resonant processes. The system is described by
using the dressed atom picture. The basic equations
giving the ionization probability are derived in sec-
tion 2. In section 3 we discuss the result obtained for
continuous excitation when the mixing between
the ground state and the quasi-resonant state is weak.
This approximation would certainly be valid for
optical multiphoton ionization of noble gases. This
discussion leads to make more precise the structure
of the effective operators introduced in the description
of phenomena. This restatement of the question is
given in section 4.

2. Basic equations. — We described multiphoton
ionization in the vicinity of two successive resonances
in the following way (see Fig. 1) :

— a non-resonant n-photon process induced by an
effective interaction HE which can be obtained from
perturbation theory to the nth order;

— a sequence of resonant processes involving :

— ‘a p-photon transition from the ground state i
to the quasi-resonant state ¢, (induced by an
effective interaction H));

— a (p + 1)-photon transition from the ground
state to the quasi-resonant state ¢, (induced
by an effective interaction H,. ) ;
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— a (n — p)-photon transition from ¢, to a
continuum state ¥ (induced by an effective
interaction Hy_ ) ;

— a (n — p — 1)-photon transition from ¢,
to a continuum state ¥y (induced by an
effective interaction HZ ,_,);

— a one-photon interaction ¥ between ¢,
and ¢,.

The system is described as a dressed atom. The
Hamiltonian can be written

~J€=J€DA+JGAF

where JCp, is a reduced Hamiltonian of the dressed
atom and J¢,p is an effective interaction between
the atom and the field. We consider only the unper-
turbed dressed atom states [iN), |@, N —p),
|, N—p—1>, | ¥z N — n) corresponding res-
pectively to the states where the atom is in state [i ) -
(resp. | @1 > | @, > | P& ) and the field is in the state
where N photons (resp. N—p, N—p — 1, N —n)
are present in the w-mode, the other modes being
empty

¥pa = W2 + No) |[iINY){IN |+ HQ, + N —p )|y N—p>{oN—p|+
+ 2, +WN—-p—-1Dw)|¢;N—p—1>{p, N—p—1]|

+r(E+(N—n)hw)|WEN—n><WEN—n|dE (1)
Ex

where 7Q;, hQ,, hQ, are the energies of the states i, ¢,, ¢, possibly light shifted by non resonant processes,
E, is the ionization energy of the atom. Under the usual rotating-wave approximation, in the space generated by
[iN>, |9; N—p>, |9 N—p —1)and | ¥z N — n) the only non vanishing matrix elements or J&,z are

(WgN—n|H}|iN) = (iN | H} | ¥y N—n)* = hJ = B(N)"*

C¥eN—n|HZ,|¢;N—p) =@ N=p|Hi | ¥ N=n)* = KL, = hl,(N)"~??
< TEN_n|Hf—p—1 o2 N—p—1) =<, N-p—1 |HnE—p—1 | g N—n)* = AL, = hl,(N)"~#~ D2

(o N=p|H,|iN)=(iN|H,|p; N

—p ¥ = B, = Ry (NY"? @

CON=p=1[H, [IN) = (iN | Hpuy | 9 N—p—1)* = 1K, = Tk, (N)?+ D2
CON=p|V|o:N=p—1) =L@ N=p—1|V|g N=p) = iW = iw(N)"/?,

J» k1, k3, 11, 1, w are mainly atomic parameters with
a slow dependence on w. The w-dependence comes
essentially from the energy denominators, appearing
in the effective operators obtained by perturbation
theory. Their corresponding variations remain negli-
gible when the range of interest is very small compared
to the frequency distance between the studied range
of frequency and the nearest other resonances. We
assume here that this condition is satisfied and we
will neglect the frequency dependence of the effective
operators. In the case of a single resonance, this
assumption leads to a description of the ionization

probability by a Fano profile. Such a profile is essen-
tially characterized by an asymmetric resonance peak
and a zero minimum. When the resonance is very
strong, the minimum is very far from the resonant
frequency and the assumption of frequency inde-
pendent effective operators may be not valid in the
vicinity of the minimum. In this sense, the profile
obtained for a strong resonance may not be described
by a complete Fano profile. This fact has been recently
pointed out [5]. Nevertheless our assumption seems
reasonable if the range of application is carefully
limited. Numerical calculations have been carried out
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on 4-photon ionization of CsI near 6f resonance [6],
in order to interpret experimental data [7]. The good
agreement between experimental and calculated reso-
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nance profiles allows one to think that the use of
frequency independent effective operators may be
valid in some physical situations.

If we write the wave function under the following form :

1P > =

{ailiN>+a1|¢1N_P>+a2|¢2N_p—1>+aE|TEN

xexp{—ili(N'—p‘—%>w+9%&:|t}. ?3)

—n)y} x

The equations of motion for the wave function components become

ia; =_<(P+ 1>5+A>ai+K;"a1+K§“a2+{J*aEdE
2 - f,

id1=(g+<P+%>A>al+K1ai+Wa2+jL1*aEdE @'

.. (5
1a2=_ §+

<p + %) A> a, + Kya, + W*a, + JLz*’aEdE

idE= _"5EaE+Jai+L1a1+L2a2

with
Jolfe-a a-q
2 J p+1
1(Q,-Q 9,- ¢
Q_f{ D +p+1}
b=w—-Q
1 E Q +Q,

The number of ions obtained is
N=P~f]aE|2dE )

where P is the number of atoms interacting with the
field. The system (4) is solved by first integrating over
energy and then by solving differential equations.
A general solution can be calculated for a square

pulse excitation, without any assumption on the
relative values of J, K, K,, L,, L,, W. The formula
is so complicated that it is quite unusable. We have
preferred to solve eq. (4) in a realistic approximation
and we study only continuous excitation. The assump-
tion of resonant levels coupled more strongly with
the continuum than with the ground level is actually
valid in noble gases.

3. Solution in the case W, L, L, > K,, K, > J. —
Since the transition ¢, — ¢, is a one-photon process,
it is reasonable to suppose that the interaction bet-
ween these two levels is large. We study the case where
n—p<pandthusL,, L, > K, K, > J.

Eq. (4) are solved. in the approximation

W,L,L,> K., K, > J.

The number of ions obtained by unit-time is

’

(6)

_ 2P[J(p(p+1) (82—43H-WH+ WK, L,+K, L))+K, L, p6—4)+K, L,(p+1) 5+ 4)]?
[p(p+1) (=4 —W?P+[p(6—4) L2+ (p+1) 6+ 4) L2 +2 WL, L,]?

A
I

1 L L
_W+—ff_[ L2 dE’
T J W@ + nw) — E’
N 1 L,J
K, =K +-% — dE’
R jh@ﬁnw)— ’

K, =K I _dE’

2o jh(9+nw)

- 1 Atz p+3

§=06—-3— s
2( +p+1>+p(p+1)A
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I 1( 4* 44 47
T 2\e+l p ) 2P+ D
1 L}
At = - - dE’
nJ‘ii(Qi + nw) — E’
1 2
AL2 — _g\J~ L2 dE’
A A& + nw) — E’
2
4 =1g J dE’
T W + nw) — E’

Eq. (6) can be rewritten in a more elegant form by
introducing a matrix M defined by

_1=<p"<5—z> pan
pP+1DG+ 4)

M 3
-

N_

[(@+ 1)K, Li(6+ 4) +pK, L(6 — 4) + W(K, L, + K, L))]*

Neé6

[J LR R M(I“)]Z
L,
~ Ll 2 ’
- [(Ll L) M<L2>:|

For sake of simplicity the symbol ~ will be omitted
and all the transition matrix elements will be assumed
to be real in this section.

The terms containing J correspond to the direct
ionization and to the interference between the direct
process and the resonant ones. If we suppose that
J < K, K, and neglect the terms containing,J, we
keep only the terms corresponding to resonant
processes, that is to say

N =2P

(7

= T DG = 4D — WP+ [p6 -

We discuss this formula according to the relative
values of the parameters 4, L,, L,, W. We first discuss
the case of a well isolated resonance, which appears
when the distance between the two resonances is
larger than their expected widths (| 4 | > W, Ly, L,).
Secondly we discuss the case of weakly coupled quasi-
resonant level, and find again the situation already
described, of two independent resonant quantum
paths, each of them interfering with the non resonant
quantum paths (W < Ly, L,, | 4 |). Finally we discuss

5
N =2P

MDL2+(p+ 1)@+ AL +2WL, L,]*

the case of strongly coupled resonant levels. It allows
us to stress the specific features due to the inter-
ferences between the two resonant quantum paths.

3.1 14|> W,L,,L, : WELL-ISOLATED RESONANCE.
— From eq. (7), we can find again the result obtained
for a well-isolated resonance. The resonance corres-
ponding to ¢, is obtained when § = 4, this resonance
is well-isolated if 6 + 4 is very large along this reso-
nant curve (|4 | > W, L,, L,); then N’ becomes

WK, ]2[ WL, 2
EDIET)) L1+@+4x5+AJ _ 2 P(KL)? ©
[p(é—A)————————WZ‘LIZL22 ]2+[L TR — T %+ L%
. @+ 1O+ 4) YT+ )6+ 4)

Eq. (8) is equivalent to the result obtained in [3]
for a well isolated resonance. By going back to the
content of each term of this equation, one can easily
show by using standard perturbation theory this
equivalence, term by term. Additional terms appear
corresponding to high order processes which have to be
neglected for consistency with the assumption that

only the lowest non vanishing order of perturbation °
is taken into account. )

We can already state explicitely the condition to
obtain a well isolated resonance : |4 | > W, L, L,.
Conversely we can see that interference processes can
be expected if this condition is not satisfied.

3.2 W< Ly, L, | 4| — In this case N° becomes

[(p+ DK, L6 + 4) + pK, L,(6 — 4)]*
P+ 1)@ -4 + (pO - DL+ @+ 1)+ 4)LY?

)
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Then, the resonant process consists of two independent channels. We should obtain a similar expression by
considering two resonant levels ¢, and ¢, corresponding to harmonics p and g, for any value of p and g satisfying
the condition p > n — p and ¢ > n — ¢. The dependence of the resonant curves on the values of K and L is

the same as in the case where p = g¢.

In fact we could have derived the equations describing doubly resonant photoionization for any harmonics p
and ¢ of the field ; in that case we would have obtained :

2 2

G, = <P+qa+q'p4) ai+K1*a1+K;a2+JJ*aEdE

idl = <q—p5 +p+qA> a1 +K1ai+ Wa2+ijaEdE

2 2
ia, = — (q;pé +P-2i-qA> a2+K2ai+W*a1+jL§"aEdE
iag = — dgag +Ja, + Lya, + L, a,

with

1{91—Qi Q2—‘Ql}
4 == -

20 » q
9_1{91—91 QZ_Ql}

2 p q (9b)
0 =w—Q

_ P+q E Q,+9,

5E—<n——2—>co—ﬁ+—2—

where W is now an effective interaction if |p — g |
is larger than one.

The similarity of eq. (4) and (9b) can be understood
by remembering that in terms of dressed atom multi-
ply resonant photoionisation is described as a mixing
of quasi degenerate levels. We can expect a large value
of W only when |p — ¢ | = 1if ¢, and ¢, are con-
nected by a dipolar electric interaction. In other case
W is either zero (p = q) oris negligible(|p — ¢ | > 1).

N=2P

33 W, |4|> Ly, L,, — Since W > L,, L,,
we can consider only the interaction W and neglect J,
K, L,, L, in a first order calculation. Then the eigen-
states of the system are now : |iN ) | E, N — n ) and

|+>=cosf|l¢, N—p)+sinflo, N—p—1)
(10)
|—>=sin0lo; N—p)—cosf|lo, N—p—1)

with

cos20 =

. |14
sin2 6 =X

e DT

By using this eigenstate basis, N’ can be derived in a
straight-forward way and we obtain :

[ 2 [(ped)or s r]sxr[(ped)sdx]]

with
L, =L;cosf + L,sinb
L_=L,sin6 — L,cosb
K, =K ,cos0 + K, sin 6
K_=K;sinf — K,cos 8.

Two resonances appear for

W2
+ (4% + —
\l r(p+1)

5:

[p(p +1) (6% — AZ)_— w2)* + [Li '(<p + %> o +5+ R> + L2 ((p +

a4

N =

= (11
>5 +%—R)]2

Since Ly L, < | 4|, W we can consider that 4 does
not have a large variation along each resonance and
near the resonances )N’ can be described by

Ky £4)

|6 F A2+L2+£“
‘ p(p +1) *

(12)
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where
K, (1 4 172 K 1 4 172
Ky =—%|-% - + 21 o7 —
VP2, Jary 2 [4r 4+
pp+1) p(p+1)
L, (1 4 vz L, (1_ 4 12
L, =—|-= - + = 07 =
VP2 gy PP 2 42
p(p+1) p(p + 1)

The resonant curves have respectively widths £2

and £2. When |4 | > W/./p(p’'+ 1) we find again
2 2
2

p+1

the two isolated resonances with widths —p—l and

When W > | 4]
l(Ll L, )
£, = — =L 4y 2
V2\/p Jp+1:

I 1 ( L, L, )
\/ 2 \/ p Jp+1
This description of doubly resonant photoionization
shows that, when the interaction between the quasi-
resonant levels is large, the resonance curves are very
different from those which could be predicted if the
two resonances were considered as isolated.
In any case the distance,

W2
p(p +1)°

between the two resonances is larger than 2|4 |
which would be obtained if the resonances were
considered as isolated, and the relative values of the
widths of the resonant curves £2 and £2 can be very
2 2
different from the relative values of —£1 and L .
.. .. p ptl

‘The most remarkable cases are L, < L, where £3
and£? have the same order of magnitudeand L, ~ L,
where £2 and £% can have very different order of
magnitude. In the first case (L, < L, or L, < L,),
if we should consider the resonances as well isolated,
we should obtain two resonance curves with widths of
very different order of magnitude, while a calculation
‘taking into account the interaction between the two
quasi-resonant” levels gives -two resonance curyes
with width of the same order of magnitude. In the
second case (L, ~ L,), if we consider the resonances
as well isolated, we obtain two resonant curves with
width of the same order of magnitude, while a cal-
culation taking into account the interaction between
the two quasi-resonant levels gives two resonance
curves with widths of different orders of magnitude.

These situations can occur in numerous cases,
because the dependence of L; and L, on the field

2 4% +

intensity is different : L? varies as N"7? and L}
varies as N" 27!, It certainly may be possible in most
cases to realize the successive situations L; < L,,
L, ~ L,, L, < L, by increasing the field intensity.
A schematic representation of these situation is
illustratéd in figure 2.
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The increase of separation between resonances can
be easily interpreted by looking at the energy diagram
of the dressed atom (see Fig. 3).

The energies of levels

[IN>|oyN=p>|o; N—p—1)

are respectively @, + No, Q; + (N — p) o,
Q, + (N — p — 1) w. The variation of the energies
of these levels are represented by the straight lines
a, b, c. If the interaction between ¢, and ¢, is neglect-
ed, the position of the resonances are given by the inter-
sections A and B of ¢ with respectively a and b. Because
of the strong interaction between ¢, and ¢, the
straight lines a and b must be replaced by an hyperbola
having these lines as asymptotes. The intersections
of this hyperbola with the line ¢ are C and D. CD is
larger than AB corresponding to the increase of
separation between resonances when the interaction W
is large. .
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Fi1G. 3. — Dressed atom energy diagram.
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