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Résumé. 2014 L’objet de cette lettre est de montrer que, dans certains cas limites physiquement
réalisables, un modèle simple, utilisant le formalisme de l’opérateur densité et une description classi-
que du champ électromagnétique, permet d’étudier l’influence des caractéristiques (durée et forme)
du pulse d’excitation sur l’ionisation multiphotonique résonnante.

Abstract. 2014 The object of this letter is to show that, in some limiting cases, a simple model using
an atomic density operator and a classical description of the field allows one to study the influence
of the characteristics (duration and shape) of the excitation pulse on resonant multiphoton ionization.
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During the last few years, mainly thanks to impor-
tant advances in tunable laser technology, various
phenomena which depend on light intensity (shift and
asymmetry of resonances, variations of the non-

linearity) have been observed on resonant multi-

photon ionization processes [1]. Some of them have
been reproduced theoretically [2] by introducing
higher order terms arising from the S-operator expan-
sion within the framework of time-dependent pertur-
bation theory. However, the corresponding calcula-
tions are extremely complicated even for the simplest
atoms and, in any case, it is rather difficult from
such numerical treatments to deduce general conclu-
sions and to give a simple physical explanation of the
observed phenomena.

This problem has recently been reconsidered from
a quite different point of view by using a realistic
model which can be solved exactly to give the ioniza-
tion probability near a resonance as a function of time,
light intensity and a few atomic parameters [3, 4, 5].
In particular, if higher order effects can be ignored
both in the nonresonant process and in one of the
two steps of the resonant process, the ionization
cross-section and the non-linearity can be written,
for continuous excitation, as analytical functions

depending on two parameters only [3, 4]. Further-
more, the role of the light pulse duration has been
emphasized in the general case [5]. However, this
model utilizes a quantum description of the driving
field; and it is well known that this description is not
convenient to characterize fields with an amplitude
and/or a phase varying in time and thus, to take into

account the influence of the excitation pulse shape,
for example. The object of this letter is to show that,
if higher order effects are important to the transition
between the ground and the resonant states only,
this difficulty can be avoided by using an atomic density
operator and a classical description of the field. The
solution is discussed in detail for square pulses and
some indications are given for more realistic pulses.

Basically, we use the same model as in ref. [3, 5],
where the validity conditions of the corresponding
approximations are discussed in detail. However,
one can recall that multiphoton ionization near a
resonance is described in the following way :

i) a nonresonant n-photon process induced by an
effective interaction Hn which is obtained from pertur-
bation theory to nth order,

ii) a two-step process : first, a p-photon transition
from the ground state i to the quasiresonant state ~
(this first excitation is induced by an effective inter-
action Hp), then a (n - p)-photon transition from l{J
to a continuum state ’JIE (this second excitation is
induced by an effective interaction Hn _ p).
For reasons of simplicity, all the states considered

are assumed to be non-degenerate and only one
continuum is introduced in this model. Under these
conditions, if one uses a classical description of the
driving field, the Hamiltonian takes a very compact
form :

where HA is a reduced atomic Hamiltonian and HAF,
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an effective interaction between the atom and the and, the equations of motion for the density matrix
field. HA can be written : elements become :

where ~52; and /K2~ are the energies of the states i
and cp, possibly light-shifted by nonresonant processes,
I is the ionization energy of the atom. If o/2 7c, 8(t)
and cp(t) are respectively the frequency, the amplitude
and the phase of the field, and if we keep only the
energy conserving terms in the Hamiltonian (rotating-
wave approximation), HAF reduces to :

k, IE, and jE are atomic parameters and are assumed to
be real.

Now, if the condition 2 p  n is satisfied, the n-
and (n - p)-photon processes can be described, in
general, by retaining the lowest-order non-vanishing
terms and it is clear that atomic coherences within
continuum states can be ignored. With this approxi-
mation, the atomic density operator can be restricted
to : -

where :

If P is the number of atoms interacting with the
field, the total number of produced ions is given by :

so long as N/P remains much smaller than one.
Eqs. (5) are nothing more than the familiar Bloch

equations for a two-level atom [6] and therefore,
since the equations of motion separate completely
for the two discrete states, the approximations made
here are exactly the same as in ref. [3]. However,
density matrix formalism and classical description
of the field offer an important advantage : K, JE
and LE are allowed to vary in time and, thus, the
influence of the excitation pulse shape can be studied.

It has already been noted that, to obtain the total
number of ions produced, the solutions of the equa-
tions of motion must be integrated over energy.
In the general case, this integration would be very
difficult to perform but one can assume that JE
and LE do not vary rapidly with E and, thus, one can
consider them as energy independent over the whole
range of integration. Moreover, if ~_-t- ~ 2013 / is
much larger than the mean value of K, K, the integra-
tion range can be extended to - oo without introduc-

ing significant errors.
With these supplementary approximations, which

are valid of course in most realistic cases, the solution

corresponding to square pulse excitation :
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can be obtained in a straightforward way and one
obtains finally :

where ND = 2 ~cPJ2 T is the number of ions which
would be produced if the nonresonant process were
the only one, A = JLL and y = ~~4/~ = ~j/kl. If
the pulse area, 0=2 KT, is large, only the first term
in eq. (8a) is important and one finds again the result
given in ref. [3] for continuous excitation. The corres-
ponding spectral response function, NIND is the
sum of a constant (direct process), a lorentzian term
(two-step process and corresponding alteration of
direct process) and a dispersion term (interference
between the two processes). The second term in

eq. (8a) describes the transient part of the phenome-
non and it clearly comes’from Rabi nutation of the
Bloch vector [6] corresponding to the two discrete
levels. Its relative importance depends essentially
on 0 and if 0 is larger than 3 vr, the relative difference
between the values of N, Nc and Np, corresponding
respectively to continuous and square-pulsed excita-
tion, is smaller than 10 % for any 3 and any A. How-
ever, if we define 0g by the minimum value of 0 for
which the absolute difference between (Ne/No) and
(NPIND) becomes negligible (i.e. smaller than a few
per cent) for any 6, 0g depends on the value of A (which
varies as Ep) and more precisely decreases when A
increases. Some examples of such resonance profiles
are given in figure 1 and a detailed analysis shows
that for 0  8S, the resonance peak becomes very
weak and its position does not depend on the light

FIG. 1. - Square pulse excitation. Influence of the pulse area.

A 2 = 0.1 ; - 8 = 1t, oo ; .... 8 = ?r/2; - - - - ~ = 7C/4.

intensity, while for continuous excitation (0 &#x3E; 8S),
this position varies as KI(E which is proportional
to ë2p. Another way to describe transcient effects is
to consider that, when 0 decreases, the direct process
is enhanced with respect to the two-step process and,
actually, the resonance profile is not very different
from the one which would be obtained with conti-
nuous excitation but, for an effective value of A

larger than the real one. For precise comparison
with experimental data, care must be taken, however,
since all the previous results are valid only if relaxation
processes and in particular spontaneous emission
can be ignored. If r is a typical relaxation constant
for the considered problem, this is true only if

K &#x3E; F and FT ~ 1. If rT is much larger than one,
the correct result is always the one derived for conti-
nuous excitation provided that K &#x3E; F. At this point,
let us remark that another advantage of density
matrix formalism is the possibility of introducing
relaxation in a simple way, but the corresponding
results are very complicated and it is useless to discuss
them in this letter.

Now, to take complete advantage of the formalism
introduced here, we have to discuss the influence
of the pulse shape. For non-square pulses, it is no

longer possible to find analytical solutions but one
can perform numerical calculations for particular
cases. Some examples of such calculations (carried
out on the UNIVAC 1110 at Universite Paris-Sud)
are given in figures 2, 3 and 4. The corresponding
pulse shapes are the following :

and we have chosen n = 3, p = 1. If we denote by
JM and Z~, the peak values of J(t) and L(t), it appears
that the spectral response function depends essentially
on the three following parameters : the area of the
pulse

where A 2 is defined by :
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FIG. 2. - Influence of the pulse shape. 8 = 4 ~ AM = 0.1. -
Continuous excitation; -.- a) ; .... b).

FIG. 3. - Influence of the pulse shape. () = ’It, Am 2 = 0.1. -
Continuous excitation; .... b) ; - - - - c).

For example, in the case considered (n = 3, p = 1),
in spite of the fact that the corresponding pulses are
rather different, xa and xb are very close ( N 0.82)
and the corresponding resonance profiles are quite
similar (see Fig. 2). Moreover, one can again define
a limit value of 0, Os, in such a way that, for 0 &#x3E; Os,
the resonance profile is no longer dependent on 0.
For a given value of AM, s increases when x2 decreases.

FIG. 4. - Influence of the pulse shape. 8 = 4 n, AM = 0.1. -
Continuous excitation; .... b) ; - - - - c).

In any case, if we again try to characterize the spectral
response function by an effective value of A, this

quantity, ~4, increases when 0 decreases, as for a

square pulse. Now, if we consider two pulses 1 and 2
with xl  x2, it appears that (for a given value of A~

The results given in figures 3 and 4 are in qualitative
agreement with these general rules since x~ = 0.69
is smaller than xb = 0.83, itself smaller than one,
which is the value ofx~ fora square pulse. As a conclud-
ing remark on this point, it must be emphasized that
the respective influences of the pulse area and of the
pulse shape are rather intricate, and therefore, if
these characteristics are not experimentally known,
a relevant interpretation of resonance profiles in
resonant multiphoton ionization is impossible in
most cases.

Although time-dependent phases appear in the

general formalism described here, we have considered
in particular examples field amplitude variations only.
Therefore, we have not introduced temporal coherence
properties of the field, but it must be noted that these
properties can play an important role in resonant
multiphoton ionization as has been shown in recent
papers [7]. Finally, it is clear that a knowledge of all
the characteristics of excitation (pulse duration,
pulse shape, temporal coherence) is essential to

interpret in detail resonant multiphoton ionization
processes. The formalism that we present here leads
to a parametrization of resonance profiles which
allows one to take into account all the field characteris-
tics and, thus, to extract reliable atomic parameters.
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