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Résumé. 2014 On étudie par un modèle de réseau de l’état élastomère la conductivité ionique d’un
polymère. Les résultats prédisent le comportement de la conductivité en fonction de la fréquence du
champ appliqué et de la température.

Abstract. 2014 A lattice model of the elastomer state allows the calculation of the electrical conduc-

tivity due to ions in a polymer matrix. The results predict the changes of conductivity with the fre-
quency of the electric field and the temperature.
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Depending upon temperature two amorphous states
exist for linear polymers : the elastomer and the

glassy states. When ionic salts are dissolved in elas-
tomers, the system exhibits a relatively strong elec-
trical conductivity, typically 10-5 to 1 Q/m [1]. This
conductivity has an Arrhenius behaviour as indicated
in figure 1. The activation energies are different in
the glassy and in the elastomer regions, suggesting
different conductivity mechanisms.

FIG. 1. - Arrhenius plot (log a versus 1/T) of the electrical

conductivity of a nickel perchlorate-polyacrylonitrile system. The
molar composition of the system is polyacrylonitrile 10 moles,
Ni(CI04)b 6 H2 0 1 mole. This plot shows clearly the two different
slopes corresponding to the elastomer state and to the glassy state.

(*) Equipe de recherches associee au C.N.R.S., n° 373.

The purpose of this letter is to describe a plausible
mechanism for the electrical conductivity in the
elastomer state, based on the lattice model of Flory [2].

In this model, space is divided into cells arranged
in a periodic lattice. A cell can be occupied by a
monomer unit or be empty. In the elastomer state
the empty cells are numerous and mobile. They are
responsible for the high compressibility of elastomers.
In the glassy state their small number hinders move-
ments of the chains.
When ions are added, they also occupy lattice sites.

Because of its high activation energy in the glassy
state, it is assumed that the electrical conductivity
is due to ions moving between interstitials. On the
other hand, we assume that in the elastomer state,
ions substitute for monomers in the lattice cells.

They can move only if at least one of the neighbouring
cells is empty. From this assumption, we can already
presume that, in the elastomer state only, the conduc-
tivity might show a frequency dependence, and that
a characteristic frequency might be the characteristic
frequency of the monomers movements.
The electric current can be written :

where :

- Hij is the probability that the jth cell is empty
when there is an ion in ith cell ;

- tij is the transition probability per unit time
for an ion to move from i to j ;
- rij is the space vector between the jth and the

ith cell ;
- Ze is the charge of the ions.
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We evaluate tij according to Eyring’s model [3]

where AE is an energy barrier and Uj and Ui the elec-
trostatic potential energy on the two sites.
We now have to calculate the ion-hole correlation

function Hij. Let us neglect in a first approximation
ion-ion correlations [4]. This allows us to consider
an ion placed at the origin of the lattice. In order to
calculate Hij, we now have to evaluate the probabi-
lities of having a monomer or a hole at r = rij. This
is done by solving the differential equations yielding
these probabilities. When calculating the rates of
variation of the probabilities, we take into account
the fact that each time the ion moves, the origin of
the lattice is also moved. What appears in the equa-
tions as probabilities, are in fact correlation functions.
The rate of variation of M,., the probability of having
a monomer in r, can be written

where :

q is the probability that a monomer moves
into a neighbouring hole [5];
- Hr is the probability to have a hole in r ;
- s are the vectors joining to the neighbouring

sites.

The origin of the two terms of the sum is the

following :

is due to possible changes of site of a monomer unit
from r + 8 to r or vice versa.

comes from the fact that when the ion moves by E
with a probability le H the lattice is translated and,
after the translation, what was in the site r + E is
in the site r.
The electrostatic potential distribution being given,

it is then possible (at least in theory) to solve the
non-linear differential system in Mr and to obtain
the values of He and the electric current.
We further simplify the differential system with the

following approximations :
- We restrict ourselves to the linear response in

electric field.
- We take the electric field E along the x axis

and we neglect all the transverse correlations.

We have then a one dimensional system of equa-
tions :

where :

- n refers to the position of the cell,
Ho and Mo are the equilibrium probabilities

of having a vacancy or a monomer unit (Ho + Mo =1 ),
- x refers to the number of transverse neighbours

(4 for a cubic lattice),
- 4 = t ± s.

t is the transition probability for the ion in the
absence of electric field and s in the linear approxi-
mation is :

a is the lattice parameter.
The equations of variation of the neighbours of

the ion are different :

The system is linearized by writting

and by keeping in the equations the terms linear in mn
and s. Taking into account the translational invariance
of the equation in Mn (except near the origin), we
look for a solution of the type :

where a) is 2 7t times the frequency of the applied
electric field. The linearized equation in mn gives a
dispersion relation :

writting z = eik we obtain a second degree equation
in z

In each half space, we take as the physical z the
solution such that mn decreases when I n I goes to

infinity. For n &#x3E; 0, we take the root smaller than 1

and for n  0, the one larger than 1. 
,

Knowing the values of k for n &#x3E; 0 and for n  0,
the following linear system in ml and m - 1 can be
solved



L-185IONIC CONDUCTIVITY IN THE ELASTOMER STATE

where

and

The linearized electric current is :

We thus obtain :

When the infinite frequency current is

it corresponds to a zero ion-hole correlation function.
On the other hand, at low frequency, the current

is reduced simply by the fact that when an ion moves
it leaves behind it a vacancy, thus increasing the pro-
bability of the reverse current. Of course if the fre-

quency of the field is very high as compared to the
transition probability of the ion, the correlation does
not reduce the conductivity.

Typical conductivity behaviour is plotted on

figure 2.

FIG. 2. - Plot of the real and imaginary part of conductivity
versus frequency, for the following values of the parameters defined
in the text q = t = 1012 Hz, Ho = 0.1, Mo = 0,9, x = 4 (cubic

lattice).

We have tested the validity of the assumption on
the absence of transverse correlation, by computing
a numerical solution of system (1). The computation

is done on a 9 x 9 cells lattice and the differential

system is solved by a fourth order Runge-Kutta
method [6]. Figure 3 shows the comparison of the
two methods for 2 transverse neighbours (the two
dimensional case). There exists a slight difference in
the obtained currents, especially at low frequency,
where correlations are most important.

FIG. 3. - Comparison of the values obtained from the analytic
expression of the current (full line), with those obtained from a
computer simulation of equation (1) for a 9 x 9 square lattice
(Crosses). Parameters are the same as for figure 2,’ except that

x = 2. The ordinate is the magnitude of the conductivity.

In conclusion, from these calculations we should
expect the following behaviour for the electrical

conductivity.
- The conductivity should increase with frequency

when the frequency is of the order of q or t. q is typi-
cally an inverse relaxation time for rotation of mono-
mers and is expected to be in the microwave region.
t is frequency of transition of the ion between adjacent
sites and should be in the same frequency region.
The change in conductivity and in permittivity due
to the ions should be sought in the microwave region,
unfortunately also the region for dipole relaxation
phenomena. Nevertheless, one can play with the ion
concentration parameter to distinguish the predicted
effects from these parasitic phenomena.
- The low frequency conductivity is expected to

vary with temperature according to an Arrhenius
behaviour. When reasonable assumptions are made
on q, t, Mo and Ho (q = t = 1012, Ho = a few per-
cents), we expect an activation energy of the conduc-
tivity which is the sum of AE, the activation energy
of t, frequency of transition for the ions, plus 4 the
activation energy for hole creation since in the elas-
tomer region, Ho is given by

Since Eh can be known from free volume measu-
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rements, conductivity activation energy could be
used to measure the activation energy of t.
On the other hand, the lattice model can be extended

to treat other transport problems, like, for instance,
ionic conductivities in solutions or molten salts. The

general philosophy of the model is that the ion
movement creates a perturbation from the equili-

brium probabilities of occupation of the site left by
this ion, and that this perturbation interacts strongly
with the ion movement. This picture is reminiscent of
the quasi-particle description, used for instance in
the theory of Fermi liquids [7].
We thank A. Cros for providing us with his expe-

rimental results.
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