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Résumé. 2014 L’entropie vibrationnelle de solubilité, 0394Ssol, est évaluée aux très faibles solubilités
limites selon un calcul très simplifié. 0394Ssol est ainsi reliée simplement aux fréquences d’Einstein
des solides purs. En outre, lorsque l’impureté introduit des lacunes de compensation de charge, 0394Ssol
contient l’entropie de formation de lacune qui devient le terme prépondérant. Les résultats sont en
accord raisonnable avec les quelques valeurs expérimentales disponibles.

Abstract. 2014 The vibrational solubility entropy, 0394Ssol, is evaluated for vanishingly low solid
solubilities in a very simplified calculation. 0394Ssol is thus simply related to the Einstein frequencies
of the pure solids. In addition, when the impurity introduces charge compensating vacancies, 0394Ssol
includes the vacancy formation entropy, which becomes the predominating term. Results are in
reasonable agreement with the few available experimental values.
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- 1. Introduction. - The influence of impurities is
known to play a major role on the physical properties
of all solids : metals, semiconductors and ionic

crystals. The solubility limit of any impurity in solid
solution at a given temperature is ruled by thermo-
dynamics [1]. Therefore, the solubility limit should be
calculable from some thermodynamical parameters.

Let us consider a solid solution of A and B atoms
in equilibrium with an excess of B. We suppose that
the B atoms are only lightly soluble in the A phase
and we neglect the solubility of the A atoms in the B
phase. So, A may be regarded as the solvent and B
as the impurity (Fig. 1). The chemical potential of B
is then the same in both phases :

where aB is the activity ofB and ,uB~A~ is the free enthalpy
of one B atom in the solid solution A, B, excluding
the mixing entropy. It contains two terms :

H is the energy in the bonds of B with the surrounding
atoms of the lattice (in a static state), per atom.
TS is the energy in the vibrations of the bonds

of B with the lattice (dynamical state).
The configurational entropy k In aB reduces to

k In sB (sB is the solubility limit expressed as a mole
fraction) when the B atoms are distributed completely
at random on the sites of A. Otherwise it is necessary
to account for the ordering or the agglomeration by

FIG. 1. - Schematic formation of the solid solution at the solu-

bility limit. At thermodynamical equilibrium, A is saturated
with B, an excess of B is kept, while new cells of A have been formed.
A convenient method is to let B to diffuse into A, which keeps A
as a single crystal. An accurate way to determine the solubility
limit, and therefore LBSso¡’ consists in labelling B with a radio-

tracer [7].

introducing an activity coefficient. Assuming first
an ideal solution, the solubility limit from eq. (1)
takes the form :

which defines the free enthalpy of solubility :

According to eqs. (2) and (4), the enthalpy of solu-
bility is :
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which accounts for the difference of energy of the
bonds A - B and B - B, while the entropy of solu-
bility :

is the vibrational entropy change when B is surrounded
by A or B atoms, respectively.
We try in the present paper to estimate this solubility

entropy. For the further purpose of comparison with
experiment, we first review the experimental methods
leading to 88sol’

2. Survey of experimental methods and results. -
2.1 SPECIFIC HEATS. - The most direct way would
be to measure the specific heat from 0 K up to the
temperature T for the three solids : A, B and solid
solution AB.

88s01 would then be obtained from Nernst law :

However, the Nernst principle does not apply for
a solid solution because it is not possible to keep the
solid solution in a frozen state very far below the

demixing temperature.
2.2 HEAT OF FORMATION. - Barrett and Wallace [2]

measured the heat of demixing (equal to 2013A~oi) of
the solid solution NaCI, KCI by a calorimetric method.
This gives at thermal equilibrium :

i.e., the sum of the solubility entropy and of the
configurational entropy. Unfortunately, the latter

generally differs significantly from the entropy of
random mixing, especially in the concentration range
of practical use for this method, what limits its interest.

2. 3 ELASTIC CONSTANTS. - The vibrational entropy
has been previously expressed as a function of the
Debye temperature of the solid solution, itself express-
ed as a function of the elastic constants [3]. Again,
this concerns only high solubilities and, actually,
the method was applied for predicting exsolution
domes [4].

2.4 SOLUBILITY LIMIT. - The solubility limit is

measured by various techniques, such as X-ray
diffraction, which gives the AGsoI derived from eqs. (3)
and (4) at a number of temperatures. Again, those
methods apply for rather large solubilities. Then the
surrounding of the impurity changes as T = ~o(SB)
varies, entailing a strong dependence of ~Hsol and
A5~t on temperature. In fact, it is only for very low
solubility limits that a linear dependence of ð.Gso1
on T is observed, giving the limiting values for ~Sso,

, 
and 4HSO1.

Solubilities as low as 10-3 and less can be easily

determined thanks to the sensitivity of the radiotracer
technique, as successfully applied in a few systems :
NaCI, YCl3 [5], KCI, MnCl2 [6] and KCI, K2S04 [7].
In those cases the solubility limit is reached by letting
excess impurity diffuse into the pure solvent perfect
crystal (Fig. 1). The solubility limit can be reached
even for a low diffusion coefficient because the latter
is enhanced by a self-doping effect. Thus, the ionic
crystals will be taken as an example of the following
estimation of the solubility entropy.

3. Calculation of the solubility entropy. - The
analysis will be restricted to the following range of
concentration and temperature :
- The impurity is surrounded only by atoms of

the host lattice. This implies low solubilities.
- The entropy is calculated for solubility limit

temperatures higher than the Einstein temperature
in the harmonic approximation. The vibrational

entropy change when the pulsations change from c~
to c~~ is then given by :

We follow in that way the calculation of the phase
change entropy of Friedel [8] and of the vacancy
formation entropy of Dobrzynski [9] and ourself [10].

3. 1 SOLUBILITY ENTROPY OF AN IMPURITY OF

SAME VALENCY AS THE SUBSTITUTED ION. - This is
the case of, e.g., the solubility of KCI in NaCl.

According to eq. (4) and making use of the addi-
tivity rule to express the chemical potentials of the
ionic species, one gets :

From this equation and equation (6) one obtains the
solubility entropy in the form :

This expression can be calculated as a function of
the vibration frequencies through the fundamental
eq. (8). A solid compound such as NaCI, containing N
molecules, is to be regarded in the Einstein model
as 3 N independent oscillators of pulsation c~Na+
and 3 N independent oscillators of pulsation c~-. *
The relevant pulsations are given by the equations :

where oc is the force constant and m the ion mass.
Furthermore, when an ion is substituted for a

foreign ion, Lannoo and Dobrzynski [11] showed
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that a similar equation for the pulsation of the foreign
ion, e.g. K+ in NaCI :

holds true with a good accuracy with the perturbed
force constant, (x’, essentially depending on the
interaction between K+ and the (six) Cl- at first

neighbour sites. Since the configuration of the imme-
diate surrounding is the same for K+ in KCI and K+
in NaCI, we thus assume that a’ ~ aKCI’ It follows
that :

Combining the eqs. (8) to (14), we may write the
final result :

We shall now proceed to the numerical evaluation
by following two quite distinct approaches.

3.1.1 Specific heat method. - The two Einstein
frequencies of the binary compound must satisfy
the Einstein equation of the vibrational energy E :

Instead of integrating the specific heat Cy, it is more
convenient to make use of the already computed
Debye temperature 0, and to identify the preceding
equation to the following expression of the energy :

Substituting for WNa+ from eqs. (11) and (12),
one readily obtains c~ci-(Naci) (and ~ci-(Kci))’ However,
the result can depend on the temperature T chosen
when equating (16) with (17) and a relatively high
temperature of the order of the Debye temperature
is to be taken.
With the available data for the masses of Na +, K +

and Cl- and the Debye temperatures of NaCI and
KCI [12], one obtains :

and whence from [15] :

3.1.2 Bulk modulus method. - It is also possible
to evaluate the vibration frequencies by calculating
the force constants from the second derivative of the

potential energy. This gives [11] as a function of a,
the anion-cation distance, and B, the bulk modulus :

With the available data for a, m and B [13], one
gets from (12) : 

’

the numerical results :

and finally a value for OSsol in satisfactory agreement
with the previous one, thus we feel justified in compar-
ing our approach with experimental results.

3.1.3. Comparison with experiment. - Barrett
and Wallace [2] reported some values of the total
entropy of solubility which contains the configuration
entropy. If for the latter one takes the entropy of
random mixing (e.g. 0.3 k for a solid solution of

10 % KCl) one obtains for the (vibration) solubility
entropy a value close to 0 k.
Compared with the previous calculated value one

can conclude that the right order of magnitude is
found. A more direct experimental result is needed
for confirmation.

3.1.4 Important remark. - From eq. (15) one
obtains at once the entropy of the solubility of NaCI
in KCI which is the inverse of the solubility entropy
of KCI in NaCl. Let us compare both solubilities
at the same temperature, given as the intersections
of an horizontal line with the demixing curve in the
phase diagram :

where A is the enthalpy term. Substituting for the
OSSOI from (15) this equation becomes very much
simplified :

Besides the influence of the enthalpy term, we find
therefore an entropy term higher than unity, which
may partly account for the experimental fact that
NaCI is more soluble in KCI than the inverse.

Therefore eq. (15) implies that all other things being
equal the most soluble species is that having the highest
Debye temperature. Since in those systems such as
KCI-KBr or AgCI-AgBr the highest Debye tempe-
rature is observed for the small ion species, this is

equivalent to the well-known general rule all other

things being equal it is more difficult to replace a small
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TABLE I

Vibrational entropy of solubility in alkali halides. The experimental values result from tracer techniques [5-7],
calorimetry [2], and conductivity data [15-16]. When vacancies are created, the calculated values include only the

vacancy formation entropy from reference [10] .

ion in the lattice with a large one than to do the reverse.
Eq. (15) could thus be considered as a partial demons-
tration of this rule.

This seems quite general and to concern also
the metal. As an example, the solubility curve of
Sn-Pb is very unsymmetrical with a much larger
solubility of Sn. Actually, the Debye temperature
of Sn is much larger than that of Pb.

3.2 SOLUBILITY ENTROPY OF IMPURITIES INTRO-

DUCING ONE OR MORE VACANCIES. - As an example,
the divalent impurity Sr + + is incorporated in the
NaCl lattice as one SrCl2 molecule replacing two NaCI
molecules. So, a cation vacancy is created. The Sr+ +
impurities and the vacancies partly associate to give
impurity-vacancy complexes. But, the particular ther-
modynamical equilibrium constituted by both ends
of the successive reaction :

SrCl2 (crystal) ± impurity-vacancy complex in NaCI
± free isolated Sr+ +, Cl- and vacancy

in NaCI

only involves :
- the non-associated Sr+ +, of mole fraction s.

Through suitable transport process measurements,
s can be determined from C, the total mole fraction
of free and associated impurities, and p, the associa-
tion degree since s = C(l - p),
- the free vacancies, whose entropy and enthalpy

of formation are well known from the pure crystal
results.

In terms of chemical potentials, this equilibrium
implies that :

where I1v is the chemical potential of the free cation
vacancies, of mole fraction equal to x. This equation
can be developed into the following form :

Rearranging of the terms yields :

We need express only the entropy :

The entropy of formation of a single cation vacancy
cannot be reached experimentally. Nevertheless, SS
entropy of formation of a Schottky pair (isolated
cation and anion vacancies) is fairly well known [10]
and for an estimate we assume :

Although the terms in brackets are difficult to

evaluate because the NaCI and SrCl2 lattices are

different, a rough analysis on the basis of the Einstein
pulsations shows that the contribution of the vacancy
should be the predominating term, so that for any
divalent ion :

It is straightforward to apply this procedure to the
case when more than one vacancy are created, for
example the solubility of YCl3 in NaCl. One thus
obtains for any trivalent ion :

Comparison with experiment. - Some results are
reported in table I when one anion vacancy, one
cation vacancy and two cation vacancies respectively
are created. At least, the right order of magnitude
is found. It is difficult to go further because of the
lack of experimental data. This is emphasized by the
discrepancy between the values reported for the same
system CdCl2(NaCI) though they result from two

similar, independent and recent analyses of conduc-
tivity data in doped crystals [15, 16].

4. Conclusion. - By assuming rather crude approxi-
mations, the solubility entropy can be related to a few
thermodynamical parameters of the pure solids. This
analysis could be somewhat improved by extending
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the influence of the impurity [14] and also by account-
ing for local ordering when observed (configurational
entropy over the random mixing entropy).

Predicting of solid solubility limits would need - in
addition to the entropy term - knowledge of the
enthalpy term AH,;.,, which seems feasible on the
usual line [1]. At last, the simultaneous determination

of A7~ and ~Ssol would also lead to the configu-
rational entropy through eq. (7).
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