Investigation of the quadrupole deformation of 11B by means of 30 Mev polarized proton inelastic scattering

Dinh-Lien Pham

To cite this version:

HAL Id: jpa-00231239
https://hal.archives-ouvertes.fr/jpa-00231239
Submitted on 1 Jan 1976
INVESTIGATION OF THE QUADRUPOLE DEFORMATION OF 11B BY MEANS OF 30 MeV POLARIZED PROTON INELASTIC SCATTERING

DINH-LIEN PHAM

Institut des Sciences Nucléaires, BP 257, 38044 Grenoble Cedex, France

(Reçu le 6 février 1976, accepté le 16 février 1976)

Abstract. — The cross-sections and resolving powers of the 11B(p, p') inelastic scattering at $E_p = 30.3$ MeV are analyzed in the coupled-channels formalism. These calculations suggest a positive value for the quadrupole deformation β_2 of 11B (prolate) and give the result $\beta_2 = + 0.52$.

In the understanding of lp shell nuclei, the investigation of their deformation plays an important role. For the 11B nucleus, Hartree-Fock calculations [1] do not give a prolate lower minimum compatible with the positive electric quadrupole moment obtained from experiments. For this nucleus a strong-coupling rotational model [2] has given a better result although a quantitative disagreement with the experimentally determined electric quadrupole moment still remains [3].

The above discrepancies have suggested that we need much more investigations about the quadruple deformation of the 11B nucleus by means of inelastic scattering. In particular a recent investigation of the quadrupole deformation of 11B by inelastic helium (3He) scattering at $E_{^3$He} = 74 MeV [4] has shown, with analysis using the coupled-channels (CC) method, the possible existence of oblate-prolate effects of 11B in this reaction. It would therefore appear necessary to determine the quadrupole deformation of 11B by means of polarized proton inelastic scattering.

In view of the determination of the sign and the value for the quadrupole deformation β_2 of 11B, we have analyzed, in the coupled-channels (CC) formalism with the rotational model using the code ECIS 75 [5], the experimental data for the cross-sections and resolving powers in the 11B(p, p) and 11B(p, p') scattering to the lower two members of the $K^t = -$ band of 11B, i.e. the $\frac{1}{2}^-$ ground state and the $\frac{3}{2}^-$ second-excited state ($E_x = 4.46$ MeV) at $E_p = 30.3$ MeV [6]. The optical parameters used as initial values for the optical model search procedure were taken from the analysis performed by Karban et al. [6] and are listed in table I. In the CC formalism, the nuclear radius is defined by

$$R = R_i (1 + \beta_2 Y_{20} + \cdots)$$

where the β_i's are the deformation parameters determined by the experiment, the Y_i's are spherical harmonics and R_i corresponds to the various optical potential radii. The interaction potential arises from the deformation of the Coulomb potential, the complex central potential and the spin-orbit potential. The deformed spin-orbit potential was of the full Thomas form [7]. In the CC calculations, the states explicitly coupled are the lower two members of a

<table>
<thead>
<tr>
<th>Table I</th>
<th>Optical model parameters used in the analysis of the 11B(p, p)11B scattering</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_0 (MeV)</td>
<td>r_0 (fm)</td>
</tr>
<tr>
<td>45.18</td>
<td>1.09</td>
</tr>
</tbody>
</table>
$K = \frac{3}{2}^-$ rotational band in 11B. The results are presented in figure 1 and the corresponding parameters listed in table II.

The two values $\beta_2 = +0.43$ and $\beta_2 = -0.50$ obtained from reference [4] by analyzing only the cross-sections of the 11B(3He, 3He') inelastic scattering at $E_{^3\text{He}} = 74$ MeV with the CC method give equally low χ^2 values. But it should be mentioned [4] that $\beta_2 = +0.43$ agrees quite well with the experimental value of $+0.0372\text{ b}$ [3] for the electric quadrupole moment. The results we have obtained by analyzing simultaneously the cross-sections and resolving powers of the 11B(p, p') inelastic scattering at $E_p = 30.3$ MeV using the CC calculations suggest also a positive value for the quadrupole deformation β_2 of 11B (prolate) and give the result $\beta_2 = +0.52$.

We are grateful to Dr. R. de Swiniarski for valuable discussions and his interest in this work.

TABLE II

Coupled-channel parameters used in the analysis of the 11B(p, p'11B*) inelastic scattering

<table>
<thead>
<tr>
<th>β_2</th>
<th>V_0 (MeV)</th>
<th>r_0 (fm)</th>
<th>a_0 (fm)</th>
<th>W_N (MeV)</th>
<th>W_D (MeV)</th>
<th>r_1 (fm)</th>
<th>a_1 (fm)</th>
<th>V_{α} (MeV)</th>
<th>r_0 (fm)</th>
<th>a_{α} (fm)</th>
<th>r_C (fm)</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0.52</td>
<td>46.65</td>
<td>1.09</td>
<td>0.59</td>
<td>3.22</td>
<td>1.30</td>
<td>1.01</td>
<td>8.38</td>
<td>0.98</td>
<td>0.57</td>
<td>1.09</td>
<td>34.83 $\times 10^2$</td>
<td></td>
</tr>
<tr>
<td>-0.60</td>
<td>46.98</td>
<td>1.09</td>
<td>0.59</td>
<td>3.34</td>
<td>1.30</td>
<td>1.01</td>
<td>8.34</td>
<td>0.98</td>
<td>0.57</td>
<td>1.09</td>
<td>38.48 $\times 10^2$</td>
<td></td>
</tr>
</tbody>
</table>

References