Investigation of the quadrupole deformation of 11B by means of 30 Mev polarized proton inelastic scattering

Dinh-Lien Pham

To cite this version:

HAL Id: jpa-00231239
https://hal.archives-ouvertes.fr/jpa-00231239
Submitted on 1 Jan 1976

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
INVESTIGATION OF THE QUADRUPOLE DEFORMATION OF 11B BY MEANS OF 30 MeV POLARIZED PROTON INELASTIC SCATTERING

DINH-LIEN PHAM

Institut des Sciences Nucléaires, BP 257, 38044 Grenoble Cedex, France

(Reçu le 6 février 1976, accepté le 16 février 1976)

Résumé. — Les sections efficaces et pouvoirs d’analyse de la diffusion inélastique 11B(p, p') à $E_p = 30.3$ MeV ont été analysés dans le formalisme des équations couplées. Ces calculs suggèrent la valeur positive de la déformation quadrupolaire β_2 du 11B (prolate) et donnent le résultat suivant $\beta_2 = +0.52$.

Abstract. — The cross-sections and resolving powers of the 11B(p, p') inelastic scattering at $E_p = 30.3$ MeV are analyzed in the coupled-channels formalism. These calculations suggest a positive value for the quadrupole deformation β_2 of 11B (prolate) and give the result $\beta_2 = +0.52$.

In the understanding of lp shell nuclei, the investigation of their deformation plays an important role. For the 11B nucleus, Hartree-Fock calculations [1] do not give a prolate lower minimum compatible with the positive electric quadrupole moment obtained from experiments. For this nucleus a strong-coupling rotational model [2] has given a better result although a quantitative disagreement with the experimentally determined electric quadrupole moment still remains [3].

The above discrepancies have suggested that we need much more investigations about the quadruple deformation of the 11B nucleus by means of inelastic scattering. In particular a recent investigation of the quadruple deformation of 11B by inelastic helion (3He) scattering at $E_{^3$He} = 74 MeV [4] has shown, with analysis using the coupled-channels (CC) method, the possible existence of oblate-prolate effects of 11B in this reaction. It would therefore appear necessary to determine the quadrupole deformation of 11B by means of polarized proton inelastic scattering.

In view of the determination of the sign and the value for the quadrupole deformation β_2 of 11B, we have analyzed, in the coupled-channels (CC) formalism with the rotational model using the code ECIS 75 [5], the experimental data for the cross-sections and resolving powers in the 11B(p, p) and 11B(p, p') scattering to the lower two members of the $K^t = {-}\frac{3}{2}$ band of 11B, i.e. the $\frac{1}{2}^-$ ground state and the $\frac{3}{2}^-$ second-excited state ($E_x = 4.46$ MeV) at $E_p = 30.3$ MeV [6]. The optical parameters used as initial values for the optical model search procedure were taken from the analysis performed by Karban et al. [6] and are listed in table I. In the CC formalism, the nuclear radius is defined by

$$ R = R_0(1 + \beta_2 Y_{20} + \cdots) $$

where the β's are the deformation parameters determined by the experiment, the Y's are spherical harmonics and R_0 corresponds to the various optical potential radii. The interaction potential arises from the deformation of the Coulomb potential, the complex central potential and the spin-orbit potential. The deformed spin-orbit potential was of the full Thomas form [7]. In the CC calculations, the states explicitly coupled are the lower two members of a

Table I

<p>| Optical model parameters used in the analysis of the 11B(p, p)11B scattering |
|---|---|---|---|---|---|---|---|---|---|</p>
<table>
<thead>
<tr>
<th>V_0 (MeV)</th>
<th>r_0 (fm)</th>
<th>a_0 (fm)</th>
<th>W_V (MeV)</th>
<th>W_D (MeV)</th>
<th>r_1 (fm)</th>
<th>a_1 (fm)</th>
<th>V_{s0} (MeV)</th>
<th>r_{s0} (fm)</th>
<th>a_{s0} (fm)</th>
<th>r_C (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.18</td>
<td>1.09</td>
<td>0.59</td>
<td>0</td>
<td>3.38</td>
<td>1.30</td>
<td>1.01</td>
<td>7.78</td>
<td>0.98</td>
<td>0.57</td>
<td>1.09</td>
</tr>
</tbody>
</table>
K = 3/2 \text{–} \text{rotational band in } ^{11}\text{B}. The results are presented in figure 1 and the corresponding parameters listed in table II.

The two values $\beta_2 = +0.43$ and $\beta_2 = -0.50$ obtained from reference [4] by analyzing only the cross-sections of the $^{11}\text{B}(^3\text{He}, ^3\text{He'})$ inelastic scattering at $E_{^3\text{He}} = 74 \text{ MeV}$ with the CC method give equally low χ^2 values. But it should be mentioned [4] that $\beta_2 = +0.43$ agrees quite well with the experimental value of $+0.0372 \text{ b}$ [3] for the electric quadrupole moment. The results we have obtained by analyzing simultaneously the cross-sections and resolving powers of the $^{11}\text{B}(p, p')$ inelastic scattering at $E_p = 30.3 \text{ MeV}$ using the CC calculations suggest also a positive value for the quadrupole deformation β_2 of ^{11}B (prolate) and give the result $\beta_2 = +0.52$.

We are grateful to Dr. R. de Swiniarski for valuable discussions and his interest in this work.

Table II

Coupled-channel parameters used in the analysis of the $^{11}\text{B}(p, p')^{11}\text{B}$ inelastic scattering

<table>
<thead>
<tr>
<th>β_2</th>
<th>V_0 (MeV)</th>
<th>r_0 (fm)</th>
<th>a_0 (fm)</th>
<th>W_V (MeV)</th>
<th>W_Q (MeV)</th>
<th>r_1 (fm)</th>
<th>a_1 (fm)</th>
<th>V_0 (MeV)</th>
<th>r_0 (fm)</th>
<th>a_0 (fm)</th>
<th>r_C (fm)</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0.52</td>
<td>46.65</td>
<td>1.09</td>
<td>0.59</td>
<td>3.22</td>
<td>1.30</td>
<td>1.01</td>
<td>8.38</td>
<td>0.98</td>
<td>0.57</td>
<td>1.09</td>
<td>34.83×10^2</td>
<td></td>
</tr>
<tr>
<td>-0.60</td>
<td>46.98</td>
<td>1.09</td>
<td>0.59</td>
<td>3.34</td>
<td>1.30</td>
<td>1.01</td>
<td>8.34</td>
<td>0.98</td>
<td>0.57</td>
<td>1.09</td>
<td>38.48×10^2</td>
<td></td>
</tr>
</tbody>
</table>

References