Susceptibility of non-crystalline ferromagnetic FeF2

F.J. Litterst

To cite this version:
F.J. Litterst. Susceptibility of non-crystalline ferromagnetic FeF2. Journal de Physique Lettres, 1975, 36 (7-8), pp.197-199. <10.1051/jphyslet:01975003607-8019700>. <jpa-00231187>

HAL Id: jpa-00231187
https://hal.archives-ouvertes.fr/jpa-00231187
Submitted on 1 Jan 1975

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SUSCEPTIBILITY OF NON-CRYSTALLINE FERROMAGNETIC FeF$_2$ (*)

F. J. LITTERST
Physik Department der Technischen Universität München
D-8046 Garching, James-Franck Str., Germany

(Reçu le 20 mars 1975, révisé le 7 mai 1975, accepté le 12 mai 1975)

Résumé. — On peut décrire la susceptibilité magnétique de FeF$_2$ non cristallin par une loi de Curie-Weiss entre 25 K et 150 K. On trouve une température de Curie paramagnétique $\theta = (22 \pm 1)$ K et un moment effectif $p_{\text{eff}} = (5.2 \pm 0.1) \mu_B$. Entre 15 K et 20.5 K l’aimantation varie avec la température et le champ, indiquant un comportement superparamagnétique. Aux températures inférieures, l’aimantation montre de l’hystérésis et une rémanence qui dépend faiblement du temps. Les moments approchant 4 μ_B/Fe$^{2+}$ impliquent que l’état ordonné est ferromagnétique.

Abstract. — In the temperature range 150 K $> T >$ 25 K the magnetic susceptibility of non-crystalline FeF$_2$ can be described by a Curie-Weiss law. A paramagnetic Curie temperature of $\theta = (22 \pm 1)$ K and an effective moment of $p_{\text{eff}} = (5.2 \pm 0.1) \mu_B$ are found. Temperature and field dependence of the magnetization between 15 K-20.5 K indicate superparamagnetic behaviour. At lower temperatures the magnetization shows hysteresis and a slightly time dependent remanence. The observation of moments which approach 4 μ_B/Fe$^{2+}$ implies that the ordered state is ferromagnetic.

Non-crystalline FeF$_2$ can be prepared by condensation of a molecular beam of FeF$_2$ on to a He-cooled substrate in a vacuum of $\sim 10^{-8}$ torr. We have shown previously by Mössbauer spectroscopy that non-crystalline FeF$_2$ becomes magnetically ordered below ~ 21 K [1]. This is in contrast to the Néel temperature $T_N = 78$ K found for crystalline antiferromagnetic FeF$_2$ [2]. The non-crystalline samples of FeF$_2$ are converted into the crystalline state only at temperatures above ~ 800 K [3]. It is thus possible to warm such samples to 300 K, carefully brush the amorphous material from the substrate, and then transfer the powder under an inert atmosphere into a magnetometer (Foner type, vibrating sample method) without any structural changes taking place. The measured susceptibility in a field of $H = 1250$ Oe and the temperature range 150 K $> T >$ 25 K can be described by a Curie-Weiss law (Fig. 1). An extrapolated paramagnetic Curie temperature of $\theta = (22 \pm 1)$ K was found together with $p_{\text{eff}} = (5.2 \pm 0.1) \mu_B$.

The derived value $g = 2.12 \pm 0.05$ of non-crystalline FeF$_2$ is only slightly larger than $g = 2.10 \pm 0.05$ for crystalline FeF$_2$ [4]. The magnitude and temperature dependence of the quadrupole splitting and the magnitude of the magnetic hyperfine interaction as derived from the Mössbauer spectra indicate a less complete quenching of the orbital momentum in non-crystalline FeF$_2$ compared to the crystalline phase [1, 3]. A simple perturbational treatment for the crystal electric field levels shows that an increase of the rhombic distortion at Fe$^{2+}$ in the non-crystalline phase leading to a decrease of the splitting between the ground state and the first excited orbital state from ~ 700 cm$^{-1}$ (crystalline phase [5]) to ~ 500 cm$^{-1}$ can explain the increase of orbital momentum. It would, however, only cause an increase of ~ 0.03 in g-factor which agrees well with the data found.

In figure 2 the magnetization curves between 15-20.5 K are plotted as $(M \times M_s(T = 0))/M_s(T)$ against $H \times M_s(T)/(T \times M_s(T = 0))$. The approximate ratios of the spontaneous magnetizations

$$M_s(T) / M_s(T = 0)$$

(*) Work supported in part by Bundesministerium für Forschung und Technologie.
FIG. 2. — Plot of the magnetization $M \times M_s(T=0)/M_s(T)$ against $H \times M_s(T)/(T \times M_s(T=0))$.

were taken to be identical to the ratios $H_m(T)/H_m(T=0)$ as determined by the hyperfine splitting of the Mössbauer resonance [1] (Fig. 3). The magnetization curves follow nearly superposing Langevin functions, a behaviour which is typical of superparamagnetism [6]. The large magnetic moments per Fe$^{2+}$ ion (approaching 4 μ_B) indicate superparamagnetism of a ferromagnetic configuration rather than superparamagnetism of poorly compensated antiferromagnetic crystallites. If we attribute this magnetic behaviour to an ensemble of non-interacting particles, with all spins coupled ferromagnetically from the slopes of the Langevin functions we can derive a mean moment of $(115 \pm 40) \mu_B$ per saturated ferromagnetic particle and a volume of (1200 ± 400) Å^3 per particle. The interatomic distances are assumed to be identical to those of crystalline FeF$_2$. The errors are mainly due to the inaccurate knowledge of $M_s(T)$ near T_c. The mean blocking temperature $T_B = 15 \pm 2 K$ observed in these magnetization measurements (typical time of observation $\sim 1 \text{ s}$) allows an estimate of the anisotropy density K of the superparamagnetic particles. Using a simple model which applies only for non-interacting particles of uniaxial symmetry (certainly an oversimplification of the present case) [7] we may write:

$$\tau = \frac{\tilde{M}_s \sqrt{k T_m}}{\gamma K} \exp(K.V/k T_m).$$

Here γ is the gyromagnetic ratio and \tilde{M}_s is the saturation magnetization per unit volume. We then find $K \approx (4.0 \pm 1.5) \times 10^7 \text{ erg/cm}^3$ which is about one third of the crystalline anisotropy of crystalline antiferromagnetic FeF$_2$ [8].

At even lower temperatures the magnetization curves show hysteresis and remanence. The remanence decreases slightly with time. The value found for the remanence at 4.2 K, $M_r = (1.5 \pm 0.5) \mu_B$ is somewhat less than 2 μ_B which is expected for an ensemble of randomly oriented single domain particles of axial symmetry [9]. The magnitude as well as the time dependence of M_r indicate that due to a distribution of particle sizes (and probably of K, too) there is still a small amount of superparamagnetic, or at least nearly superparamagnetic, particles present at the lowest temperatures.

This observation of superparamagnetism is not contradictory to Mössbauer data which show an abrupt onset of magnetic hyperfine splitting below 21 K, since nuclear Larmor precession is still faster than the flipping of magnetization of a superparamagnetic particle. Since non-crystalline samples prepared by vapour quenching are likely to contain voids, a detailed discussion of the magnetization curves at low temperatures is precluded by the ill-defined demagnetization factor.

If the molecular beam of FeF$_2$ is quenched on to a N$_2$-cooled substrate, then the inverse high temperature susceptibility extrapolates to a Curie-Weiss temperature $\theta \approx -120 K$ which comes close to that found for crystalline FeF$_2$ [4]. Below 78 K, however, the susceptibility still increases. Values of about...
2.5 x 10^{-3} \text{emu/g} \times \text{Oe} \text{ are found at } 10 \text{ K which is more than ten times the corresponding value for crystalline antiferromagnetic FeF}_2. \text{ At lower temperatures the susceptibility decreases. If the samples are cooled to } 4.2 \text{ K in an applied field of } 5 \times 10^4 \text{ Oe a thermoremanence of } \sim 0.1 \mu_B \text{ per Fe}^{2+} \text{ is found which vanishes upon heating to } 18 \text{ K. The temperature dependence of the magnetization and the thermoremanence can be interpreted in terms of superparanagnetism of small antiferromagnetic particles [10] which are not totally compensated sublattices of crystalline FeF}_2. \text{ The Mössbauer spectra further support the picture that in this case small particles of the usual crystalline structure of FeF}_2 \text{ are formed. The samples are still « X-ray amorphous ». The ferromagnetic properties of non-crystalline FeF}_2 \text{ prepared by quenching to He-temperature, therefore, cannot be attributed to surface effects of fine particles alone. The breakdown of antiferromagnetism must be correlated with the distortion of the 135° bond angle between Fe}^{2+}-\text{F}^-\text{-Fe}^{2+} \text{ connecting the corner Fe}^{2+} \text{ with the central Fe}^{2+} \text{ in the rutile cell of crystalline FeF}_2. \text{ This bond is responsible for the strong antiferromagnetic superexchange coupling in crystalline FeF}_2. \text{ A suggested explanation of the ferromagnetic coupling is superexchange via nearly 90° Fe}^{2+}\text{-Fe}^-\text{-Fe}^{2+} \text{ bonds similar to the exchange coupling between Fe}^{2+} \text{ ions inside layers of crystalline FeCl}_2 \text{ [11]. Although these magnetic data show that amorphous ferromagnetic FeF}_2 \text{ has the same magnetic behaviour as an ensemble of ultra-fine particles, more independent evidence for the presence of these particles is desirable. Such behaviour could eventually be typical of some amorphous ferromagnets. The radial distribution function will be determined in order to decide whether an amorphous cluster model with particles of the proposed size or a random network model can give a better description of the non-crystalline structure. Resistivity measurements on freshly deposited non-crystalline samples will be performed to ascertain their insulating character.}

\text{Acknowledgment. — Many helpful discussions with G. M. Kalvius are gratefully acknowledged.}

\text{References}