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Abstract 

The study of minimal surfaces is related to different areas of science like Mathemat- 
ics, Physics, Chemistry and Biology. Therefore, it is important to make more accessi- 
ble concepts which in the past were used only by mathematicians. These concepts are 
analysed here in order to compute some minimal surfaces by solving the Weierstrass 
equations. A collected list of Weierstrass functions is given. Knowing these functions 
we can get important characteristics of a minimal surface like the metric, the unit 
normal vectors and the Gaussian curvature. 

1 Introduction 

The study of Minimal Surfaces (MS) is not a new field. Since long time ago, people have 
been attracted by the shapes and properties of soap films. There is evidence that Leonardo 
da Vinci was interested in this topic [15],[18] although, the study became more formal in 
the last century when the Belgian phycisist Joseph Antoine Ferdinand Plateau (1801- 
1883) published in 1873 a large part of his observations and theoretical points of view 
in the "Trait6 de Statique Expdrimentale et ThCorique des Liquides Soumis aux Seules 
Forces MolCculaires [17](Experimental and Theoretical Statics of Liquids Subjected Solely 
to Molecular Forces). In this work he illustrated that a minimal surface can be obtained 
as a soap film by dipping a closed wire into soapy water. These experiments suggested 
the problem of finding a MS contained by a boundary (the Plateau problem). During that 
time mathematicians like Schwarz (who discovered the D,P,H,T and CLP triply periodic 
minimal surfaces), Riemann, Weierstrass and others were attracted by the problem. In 
1930 the American mathematician Jesse Douglas [4] and the Hungarian Tibor Rad6 [20] 
gave some general solutions to the Plateau problem under certain conditions. 

Due to the properties of MS, this field has been extended to other areas different form 
Mathematics, like Chemistry, Biology and Physics. For example, MS have been used as a 
model of liquid crystal phases [22], to describe structures of lipid bilayers [7] , to characterise 
inorganic structures [2], [13], [l41 , to elucidate properties of surfactants and CO-polymers 
[l] etc. Since the research on MS is interdisciplinary, it is important to make accessible 
some mathematical concepts which are relevant for the computation of these surfaces. The 
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computation of MS plays an important role because permits us to visualize and analyse 
its properties. In the first section of this work, the Weierstrass equations in different but 
equivalent forms are given. These equations allow us to compute the coordinates X, y, t and 
also important parameters for characterising the surface like the metric, the normal vectors 
and the Gaussian curvature. In the second section, Weierstrass functions (functions which 
compose the Weierstrass equations) for some examples of non-periodic, singly periodic and 
doubly periodic MS are studied. In addition, the Bonnet transformation and its importance 
as a useful tool for generating new MS is analysed. Finally, the third section is devoted 
to triply periodic minimal surfaces (TPMS). The computation of TPMS using Weierstrass 
functions obtained by an algorithm developed by Lidin and Hyde [l11 is studied. A list of 
the Weierstrass functions for TPMS is provided. 

2 Minimal Surfaces and the Weierstrass Equations 

A minimal surface is defined as a surface with zero mean curvature (H=O) at every point. 
The mean curvature is the average of the two principal curvatures in the surface [23]. 
This means that a MS bends equally to both sides at every point. In other words, each 
point is a symmetric saddle. Since in most of the cases it is difficult, and sometimes not 
possible, to find functions f(x, y, z) = 0 for a M.S. in Cartesian &space as in the catenoid 
or the helicoid , we have to use a method which enable us to calculate these surfaces. In 
1866 the German mathematician K. Weierstrass published a set of equations for obtaining 
the coordinates (x,y,z) of a minimal surface [24]. These equations can be written in the 

following equivalent forms: 

= Re[  2 P(P) Q (P) d~ 

Where p = p, + i pb. 

Where W = W, + i wb. 

X = Re L F ( r )  ( l  - G' (7)) d r  

Where r  = T,+ i n a n d i  = G. 
The Weierstrass equations guarantee that the surface obtained is a MS and this comes 

from the fact that the MS F'(z(u,v), y(u,v), z(u,v)) satisfies Laplace's equation with 
respect to the isothermal parameters "U" and "v" [g], in other words 



Therefore, r'(u,v) is harmonic and can be expressed as the real part of an analytical 
function [3]. 

Knowing the complex functions which compose the Weierstrass equations, we can derive 
the expressions for the metric, the unit normal vectors (Gauss map) and the Gaussian 
curvature.These parameters are important for characterising the surface. 

For equations (1) the coefficients of the metric or first fundamental form gll , gl2 and 
g22 can be written as 

gz2 = gll since "u" and "v" are isothermal parameters and g12 = 0 because isothermal 
parameters are orthogonal [9]. 

The unit normal vectors (Gauss map) are given by 

- r ; x G  - N = - -  1 

I& x C2l IPI2 + lQ12  [2 Re[P Q'l , 2 I m [ P  Q'l , I Q I 2  - IPl21 (6) 

Where Q* is the complex conjugate of Q, the symbol I I denotes the modulus of a 
function of complex variable, and Re[], Im[] are the real and imaginary parts respectively. 

The Gaussian curvature is defined as the product of the two principal curvatures [23] 
and can be written as 

Where P' = df? and Q' = a. 4 d~ 
The same parameters for equations (2) are the following: 

-4 
K =  

I R ( ~ ) I ~  (1 + 1 ~ 1 ~ 1 ~  
Finally, for equations (3) we have 

= -I 41~11 d G  

IFlfl + lG12)2 
l a  where GI= - 

d r  

Note that the Gaussian curvature "K" is alway negative or zero this means that each 
point of the surface is a saddle point if "K < 0" (hyperbolic point), and a flat point when 
" K  = 0" [5]. 

The Weierstrass equations have been written in different forms because in some cases, 
depending on the Weierstrass functions, the integration is easier if we use a particular 
form. In the following sections we compute some MS using the forms given in equations 
(2) and (3). 
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3 Computation of Minimal Surfaces 

3.1 Family of Enneper's Surfaces 

For the Enneper's surfaces, Weierstrass equations in the form of eq. (3) are used. The 
Weierstrass functions for these surfaces are F = 1 and G = T~ where "k" is the order of 
the surface [S] . After integrating from zero to TO using the fact that these contour integrals 
are independent of the path (F(u,v) is an harmonic function) , we obtain the following 
values for the Cartesian coordinates (X, y, z). 

1 r2k+l 
X = -[r  cos 4-  - 

2 2k + 1 cos[(2k + 1) 41 l 

Where we have expressed the complex number TO as TO = r ei+. 
In order to construct the surface we have to evaluate X, y and z for different values of 

TO. In this case the integration domain that has been choosen consists in all the points 
inside a circle of radius 1 in the complex plane. These points constitute the values of TO 

that we need to get several coordinates x,y and z in Cartesian 3-space. In figure 1 the 
Enneper's surfaces for k = l, k = 2, k = 3 and k = 4 are shown. 

3.2 Family of one Planar Limit Minimal Surfaces 

The Weierstrass functions to construct the family of one planar end minimal surfaces of 
order 'Lk" [S] are given by : 

After Integrating these functions using equations (3) without including T = 0 (singular 
point), we obtain the following coordinates X, y,z in real space 

rk cos 
z = 

k 
Giving values of r between .l and one, and values of 4 between zero and 2 .x with k = 1 

we get the surface shown in fig. 2 . Note that, again, we have put a complex number TO 

as r eib. 

3.3 Scherk's Saddles and Associated Minimal Surfaces 

The Scherk's Saddles are obtained if 

F(T)  = and G(r)  = rk 
t2("+1) + 1 

The Contour integrals for these values of F and G can be solved analytical1y.Considering 
the same integation domain as in the Enneper's family (the points inside a circle of radius 
1 in the complex plane), the surfaces of figure 3. are obtained. 



Let us examine an interesting tranformation called the Bonnet transformation which 
allow us to twist a MS preserving the metric (the arc-length between two points remains 
the same) and the Gaussian curvature. The transformation consists in multiplying the 
integrand of the Weierstrass equations by e", if 6 = 90° the surface is called adjoint. 
The Bonnet related surfaces are called associate. Basically, the importance of the Bonnet 
transformation resides in that the associate surfaces are also minimal surfaces, therefore, 
can be used to generate new minimal surfaces [10]. An example of this are the Gyroid 
(G-surface) and the P surfaces which are associates of the D-surface [2] (see TPMS section). 

In particular, the Scherk's saddle with k = 1 can be used as a fundamental element to 
construct a singly periodic minimal surface (MS periodic in one direction), and by applying 
the Bonnet transformation on this element with B = 90°, a doubly periodic MS is obtained 
(MS periodic in two directions) (see fig. 4a and 4c). On the other hand, with the adjoint 
surface of the Scherk's k=2 it is possible to build up an hexagonal layer (see figures 4b and 
4d). 

3.4 The Catenoid and the Helicoid 
For the catenoid F = 1, G = 117, and for the helicoid F = 1, G = i/r. These two MS 
are related by the Bonnet Transformation where B = 90°, this means that the helicoid is 
the adjoint of the catenoid. (see fig. 5). Note that the function G has a singular point at 
T = 0 (origin of the complex plane), therefore, this point must not be considered in the 
integration domain. 

4 Triply Periodic Minimal Surfaces 

An algorithm for constructing Triply Periodic Minimal Surfaces (TPMS) has been devel- 
oped by Lidin and Hyde [l11 in which the normals to the flat points of the surface (points 
where the Gaussian curvature is zero) are used to build up the Weierstrass function R (W) 
( see eq.(2) ). According to this algorithm R ( W )  is given by 

Where W, are the images of the flat points on the surface in the complex plane. These 
values of w, are obtained via stereographic projection of the normals to the flat points. The 
value of b depends on the topology of the surface [6] .  Some of the Weierstrass polynomials 
reported in the literature have been collected here . 

The procedure for obtaining TPMS consists basically in two steps. First, in comput- 
ing the Weierstrass equations in order to generate the Cartesian coordinates X,  y, z of a 
fundamental element of the surface, and second, in applying symmetry operations to this 
element for constructing the hole surface. Regarding the Weierstrass integrals (elliptic 
integrals), An integration algorithm is needed, like for example , a Simpons's rule or a 
mid-point rule [19]. The integration should be carried out for points inside an adequate 
integration domain avoiding singular points, although in some cases, important parts of 
the surface reside very close to the singularities. It is important to remember that the 
integrals are independent of the path in a regular region. For drawing the fundamental 
element, a mesh of points inside the integration domain can be generated to get different 
values of X, y, z, so that the points in Cartesian space which compose the surface are joined 
in the same order as the mesh points in the complex plane (inside the integration domain). 

4.1 D, G and P Triply Periodic Minimal Surfaces 

The Weierstrass function for the fundamental element of the D-Surface (diamond surface) 
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is R(w) = (W' - 14w4 +l)-'l2 [16], [2] with an integration domain given by the points 
around the origin limited by 4 circles with radius f i  and centres at (&/a, ki/&) (see 
figures 6 and 7). The G-surface or gyroid ( discovered by Alan Schoen [21]) and the 
P-surface (primitive surface) are related to the D-surface by Bonnet transformation: the 
Bonnet angle for the G-surface is 38.015' and for the P-surface is 90". 

4.2 The H-Surface or Hexagonal TPMS 

Another example of a TPMS is the H-surface (Hexagonal) for which the Weierstrass func- 
tion is 

Where 

F3 = (3 + and 0 < E < l 
(2 + ,/m) 

The integration domain consists in the region surrounding the origen bounded by the 
two circles of radius @ and centres at (0, & a / @ )  (see fig. 8). The values of w, (see 
eq.(15)) for the H-surface are: f l, f E / ( l -  .\/m) and (f E 4 i &/2 Jm)/ (1 + 
112 Jm). The parameter "E" is related to the "cla" ratio of the fundamental element. 

4.3 Other Weierstrass Functions 

T-surface (Tetragonal Surface) 

Where the values of w, (see eq. 15) are f A/(l  f .\/m and i Al(1 f Jm. These 
values which correspond to the stereographic projection of the flat points onto the complex 
plane are plotted in fig. 9. The D-Surface and the Scherk k = 1 surfaces are a special case 
of the T-surface. Changing "A" the "cla" ratio changes too [ll]. 

R(w) = [W' - (16(A4 - A2) + 2) w4 + l]-$ 

where 0 < A < and with flat point images W, at  &A& i d m  and f .\/m& i A. 
The stereographic projection of the flat points onto the complex plane is shown in fig. 
10. As in the T-surface, the parameter "A" is related to the "cla" ratio of the surface 
fundamental element [ll]. 

I-WP Surface 

The Weierstrass function R(w) for the I-WP surface has been published recently [l21 
and is given by 



The function above is obtained using equation (15) with W, = f i , fa f 1. The 
stereographic projection of the fundamental element of the surface onto the complex plane 
is shown in fig. 10. 

5 Conclusion 

Has been shown that the use of the Weierstrass equations is convenient for computing 
minimal surfaces since, on one hand, these equations guarantee that the surface has zero 
mean curvature and on the other hand, knowing the Weierstrass functions we can calculate 
important parameters for characterising the surface (the metric, the normal vectors and the 
Gaussian curvature). In addition, the Weierstrass parametrization allow us to apply the 
Bonnet transformation for generating a variety of minimal surfaces preserving the metric 
and the Gaussian curvature. Perhaps a weak point of the Weierstrass equations in the 
computation of minimal surfaces is that in some surfaces, in particular TPMS, we have 
to integrate very close to the singularities because important parts of the surface reside 
very near to these points. Finally, the Weierstrass equations should be considered as a 
method for finding new minimal surfaces which can be important to describe properties in 
biological or inorganic systems. 
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Figure 3 

Figure 3.- (a) Scherk's minimal surface with k=l.  (b) Scherk's saddle Tower with k=l.  
(c) Scherk's minimal surface with k=2. 

(d) Scherk's Tower with k=2. 
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Figure 5 

Figure 5.- Bonnet transformation of the catenoid into the helicoid (a) 0 = OO. (b) 6 = 
loo. (C)  0 = 20°. (d) 6 = 40°. (e) 6 = 60'. (f) 0 = 80'. (g) 0 = 90°. 
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Figure 7.- (a) D-surface. (b) G-surface or Gyroid. (c) P-surface. 
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Figure 8 

Figure 8.- (a) Integration domain of the H-surface. (b) Fundamental element of the 
H-surface. (c) The H-surface. 



Figure 9.- (a) Images of the flat points of the T-surface onto the complex plane. (b)The 
T-surface. 
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Figure 10 
Figure 10.- (a) Images of the flat points of the CLP-surface onto the complex plane. 

(b) Fundamental element of the I-WP surface onto the complex plane. 


