MEASUREMENTS OF ANGULAR DISTRIBUTIONS OF ABSOLUTE CROSS SECTIONS AND ANALYZING POWERS OF THE REACTION $pp \rightarrow d \pi^+$ BETWEEN 1.3 AND 2.4 GeV


To cite this version:


HAL Id: jpa-00230900
https://hal.archives-ouvertes.fr/jpa-00230900

Submitted on 1 Jan 1990

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
MEASUREMENTS OF ANGULAR DISTRIBUTIONS OF ABSOLUTE CROSS SECTIONS AND ANALYZING POWERS OF THE REACTION \( pp \rightarrow d\pi^+ \) BETWEEN 1.3 AND 2.4 GeV


CEN-Saclay, Laboratoire National Satutre, F-91191 Gif sur Yvette Cedex, France
* CEN Saclay, DPhN/SEP, F-91191 Gif sur Yvette Cedex, France
** TRIUMF, 4004 Wesbrook Mall, Vancouver, B.C. V6T 2A3, Canada
*** Université de Genève, DPNC, CH-1211 Geneva, Switzerland
**** University of Alberta, Dept. of Physics, Edmonton, Alberta T6G 2J1, Canada

Résumé - Nous avons mesuré les distributions angulaires des sections efficaces absolues, des pouvoirs d'analyse et des coefficients de transfert de spin \( K_{nn} \) de la réaction \( pp \rightarrow d\pi^+ \) pour 6 énergies incidentes du proton entre 1.3 et 2.4 GeV. La première phase de l'analyse concernant les distributions angulaires des \( A_{yo} \) et des sections efficaces absolues est achevée. Les distributions de \( A_{yo} \) présentées en fonction de \( \sqrt{s} \) pour \( t \) ou \( u \) égaux à zéro ou pour \( \theta_{x}\text{(c.m.)} \) égal à 90° confirment le phénomène résonnant vu dans une précédente expérience. Dans cette même représentation, nous montrons pour la première fois un comportement non monotone de la section efficace (pour \( t = 0 \)) autour de \( \sqrt{s} = 2700 \text{ MeV} \).

Abstract - We have measured angular distributions of absolute cross sections, analyzing powers and the spin transfer parameters \( K_{nn} \) of the reaction \( pp \rightarrow d\pi^+ \) at 6 incident proton energies between 1.3 and 2.4 GeV. In a first phase the data were analyzed to obtain angular distributions of absolute cross sections and analyzing powers \( A_{yo} \). Distributions of \( A_{yo} \) where the Mandelstam parameters \( t \) or \( u \) are equal to zero or the angle \( \theta_{x}\text{(c.m.)} \) equals 90° as a function of \( \sqrt{s} \) confirm the resonance like behaviour suggested by an earlier experiment. For the first time deviations from a smooth behaviour are also found in the \( \sqrt{s} \) distribution (at \( t = 0 \)) of the absolute cross section.

1 - INTRODUCTION

For the fundamental reaction \( pp \rightarrow d\pi^+ \) the data can be divided into two regions in energy of the incident proton: below 800 MeV where the data are relatively abundant and above 800 MeV where data are scarce. To extend dramatically the data set of \( pp \rightarrow d\pi^+ \) we have measured angular distributions of absolute cross sections, analyzing powers, spin transfer parameter \( K_{nn} \) and the polarization of the deuteron. The interest in spin observables at a few GeV stems also from the fact that earlier experiments found resonance like structures around \( \sqrt{s} = 2.7 \text{ GeV} \) in excitation functions of the spin correlation parameters \( C_{ll} /1/ \) and \( C_{nn} /2/ \) in \( pp \) elastic scattering around \( \theta \text{ (c.m.)} = 90° \). A bump was also observed /3/ in the difference between the total cross section for antiparallel and parallel longitudinal spin states around 2.7 GeV. Structures were also observed /4/ in the analyzing power \( A_{yo} \) of the reaction \( pp \rightarrow d\pi^+ \) in the same energy region. Such resonances are predicted by a model by Lomon et al. /5/. A first phase of the analysis resulted in angular distributions of absolute cross sections and analyzing powers at 6 energies between 1.3 and 2.4 GeV which are presented here.
2 - EXPERIMENTAL METHODS

To study the polarization observables of the reaction \( \vec{p}p \rightarrow d\pi^+ \) a polarized proton beam of intensity \((2 - 5) \times 10^{15}\) protons per pulse was extracted from the synchrotron SATURNE II. The protons were incident onto a 4 or 10 cm thick liquid hydrogen target. The reaction products were momentum analyzed in the magnetic spectrometer system SPES 4. Momentum analysis together with time of flight information allowed the unambiguous identification of the reaction deuterons. The polarization of the incident proton beam was continuously monitored by an in beam polarimeter and varied between 70 and 80\% depending on the extracted energy. The number of particles was monitored by a secondary electron emission monitor and calibrated by the use of the carbon activation method.

3 - ANALYSIS AND RESULTS

A Monte-Carlo program was used to simulate the geometry of SPES 4 and revealed that for certain geometries particles were lost in SPES 4. Using these calculations as a guide absolute cross sections were determined in a momentum region where no losses occurred. Complete angular distributions of the absolute cross section were thus obtained at 1.3, 1.6, 1.7, 1.88, 2.1 and 2.4 GeV. A typical distribution of the cross section as a function of the center of mass angle of the pion \( \theta_{c.m.} \) is shown in figure 1. Since the distribution is symmetric about 90\° cross sections which were measured at large angles are shown at their composite forward angles. The statistical errors are smaller than the dot size. The systematic uncertainty is estimated to be 3\% due to the uncertainty of the thicknesses of the liquid hydrogen targets and the uncertainties of the monitors. The background varied with angle and was carefully subtracted. Background, events, efficiencies and dead time were determined separately for each spin state of the incident proton beam. These two cross sections were then averaged to yield the absolute cross section for that particular \( \theta_{c.m.} \). A careful study of the cases where particles were lost in SPES 4 showed that for the determination of \( A_{\theta} \) the losses did not affect the result and therefore, for statistical reasons, a wider bite in momentum was used. As a result some of the angles for the \( A_{\theta} \) data differ slightly from the ones of the corresponding cross sections. Complete angular distributions of \( A_{\theta} \) were determined for 1.3, 1.88, 2.1 and 2.4 GeV and a typical example is shown in figure 2 for 1.88 GeV. Partial distributions were obtained at 1.6 and 1.7 GeV to complement the large angle data of an earlier experiment \cite{4}. At each energy the value of \( A_{\theta} \) at \( t = 0 \) (and \( u = 0 \)) was obtained (through interpolation if necessary) and the resulting distribution as a function of \( \sqrt{s} \) is shown in figure 3 which also includes the values from the previous experiment \cite{4}. The new data strongly support the suggestion of the earlier experiment of a pronounced maximum around 2.75 GeV. The same procedure was applied for the first time to absolute cross sections and the distribution (fig. 4) as a function of \( \sqrt{s} \) shows a shoulder around 2.65 GeV. Similar structures are confirmed by distribution of \( A_{\theta} \) when \( \theta_{c.m.} = 90\° \) or \( u = 0 \).

REFERENCES

\cite{2} Yokosawa, A., Phys. Rep. 64 (1980) 49 ;
Fig. 1 - Angular distribution of the absolute cross section as a function of the pion c.m. angle $\theta$ at $T_p = 1880$ MeV.

Fig. 2 - Angular distribution of the analyzing power $A_{\nu \nu}$ as a function of the pion c.m. angle $\theta$ at $T_p = 1880$ MeV.
Fig. 3 - Analyzing power $A_{y0}$ for $t = 0$ as a function of $\sqrt{s}$. • present experiment (typical statistical error : 0.01), + data from ref. 4 (typical error : $\sim 0.02$).

Fig. 4 - Absolute cross section (typical statistical error : $\sim 0.15$) for $t = 0$ as a function of $\sqrt{s}$ showing a shoulder around 2.65 GeV.