Polarization Phenomena in Electromagnetic Interactions at Intermediate Energies

V. Burkert

To cite this version:

HAL Id: jpa-00230889
https://hal.archives-ouvertes.fr/jpa-00230889

Submitted on 1 Jan 1990

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
POLARIZATION PHENOMENA IN ELECTROMAGNETIC INTERACTIONS AT INTERMEDIATE ENERGIES

V. BURKERT

Continuous Electron Beam Accelerator Facility, 12000 Jefferson Avenue, Newport News, Virginia 23606, U.S.A.

I. INTRODUCTION.

In this talk I discuss some of the recent results in intermediate energy electromagnetic physics with polarized particles from an experimentalist point of view. Polarized hydrogen and deuterium targets as well as recoil polarimeters have been developed over the past several decades. These have become reliable experimental tools, and are used in various physics areas. Much of the recent experimental effort in electromagnetic physics has focused on the nucleon and deuteron. With the development of 3He as a polarized quasi-neutron target one may expect extensive experimental studies of the 3-nucleon system to be carried out in the near term future. The physics possibilities using 3He as a target have been discussed in several presentations at this conference. My focus here is on the physics with hydrogen and deuterium targets, and I want to discuss the major experimental trends which have emerged over the past few years, mainly in support of the physics programs for the new CW electron machines that are presently under construction.

Of course, in electron scattering experiments "polarization" is always present, as a transverse polarization of the electric field vector of the virtual photon. To limit the scope of this talk, I will assume that the polarization of one of the external particles is measured.

II. STRUCTURE OF THE NUCLEON.

The interest in the structure of the nucleon and its resonances, and their role in nuclear properties has dramatically increased in recent years and is one of the major motivations in support of the planned experimental program at the new electron machines. The structure of the nucleon may be probed in elastic electron nucleon scattering and in inelastic reactions induced by electrons or photons. These studies are of fundamental importance as they measure the charge and current distribution as well as the transition currents of the fundamental building blocks of matter. Knowledge of these quantities allows stringent tests of microscopic models applicable at low and intermediate energies, like QCD-based quark models, chiral bag models, Skyrme models, etc.. With increasing momentum transfer Q^2 the transition from the non-perturbative regime to the perturbative regime can be studied, where simple quark counting rules may apply.
II.1 Electromagnetic Formfactors.

In elastic electron nucleon scattering the hadronic current is specified by the electric and magnetic formfactors \(G_E(Q^2) \) and \(G_M(Q^2) \). These are related to the Dirac and Pauli formfactors \(F_1 \) and \(F_2 \) as:

\[
G_E = F_1 - \tau F_2, \quad G_M = F_1 + F_2
\]

where \(\tau = \frac{Q^2}{4M^2} \). The usual techniques for measuring the elastic formfactors is the Rosenbluth separation, where one makes use of the different angular dependence of the electric and the magnetic term in the unpolarized elastic cross section to separate \(|G_E| \) and \(|G_M| \).

This technique ceases to be useful when either \(G_E \ll G_M \), or at high values of \(Q^2 \), where the magnetic contributions dominate both the angular dependent and the angular independent terms. Experimental information on the neutron electric formfactor \(G_{En} \) is rather poor for all non-zero \(Q^2 \). In the absence of a free neutron target, we have to rely on scattering from the few-nucleon systems. Unlike for the proton, the Rosenbluth separation of \(G_{En} \) from \(G_{Mn} \) is difficult even at low \(Q^2 \) because of the small size of \(G_{En} \) compared to \(G_{Mn} \). At low \(Q^2 \), \(G_{En} \) would be non-zero only if the charge distribution within the neutron were not uniform. The slope of \(G_{En} \) versus \(Q^2 \), at low \(Q^2 \) has been accurately measured, and it is positive, indicating that the neutron appears to have a slightly positive core surrounded by a region of negative charge. For \(Q^2 < 1 \text{ GeV}^2 \), \(G_{En} \) has been extracted from elastic electron-deuteron scattering data\(^2\).\(^3\). Using this procedure, however, it is necessary to assume a model for the deuteron structure. The most recent analysis allows for a 15% systematic uncertainty in \(G_{En} \) for \(Q^2 < 0.8 \text{ GeV}^2 \). For larger values of \(Q^2 \), uncertainties in the deuteron wavefunction render the methods unreliable.

The electric formfactor of the proton has been measured at SLAC\(^4\) using Rosenbluth separation for \(Q^2 \) up to about 4 \text{ GeV}^2, with error bars of 20% at the highest momentum transfer. The proton magnetic formfactor, on the other hand, has been measured for \(Q^2 \) up to 31 \text{ GeV}^2. An analysis of the electromagnetic formfactors by Gari and Stefanis\(^5\) allowed extraction of the QCD scale parameter \(\Lambda_{QCD} \). In lowest order \(\Lambda_{QCD} \) can be defined in relation to the strong coupling constant \(\alpha_s \):

\[
\alpha_s(Q^2) = \frac{12\pi}{(33 - 2n_f)\ln(Q^2/\Lambda_{QCD}^2)}
\]
where n_f is the number of quarks with mass lower than Q'. Assuming a conventional meson picture at small Q^2, and asymptotic QCD predictions at high Q^2

$$F_1 = \frac{C_1}{Q^2}, \quad F_2 = \frac{C_2}{Q^2},$$

a fit to the electromagnetic formfactors (Figure II.1) yielded values for Λ_{QCD} between 100 - 250 MeV/c. The uncertainties are mainly due to the limited knowledge of G_{E_p} at $Q^2 \geq 2 GeV^2$. A more precise determination of this parameter would be very interesting since Λ_{QCD} is not well determined from other measurements.

II.2 Polarization Techniques to Measure G_{E_n} and G_{E_p}

Two methods appear very promising in that they allow measurement of G_{E_n} in a model independent fashion. Both methods employ quasi elastic scattering of polarised electrons off deuterium. In the first case polarised electrons are scattered off polarised deuterium. In the second case an unpolarised deuteron target is used and the polarisation of the recoil neutron is measured in a second scattering experiment. Both methods are equivalent, and allow measurement of the polarization asymmetry

$$A_{en} = \frac{2\tau \cos \theta \nu_L + 2\sqrt{2\tau(1+\tau)} \cdot (G_{E_n}/G_{M_n}) \sin \theta \cos \phi \nu_{TL}}{\nu_L (1+\tau)(G_{E_n}/G_{M_n})^2 + 2\tau \nu_T}$$

where ν_L, ν_T, ν_{TL} are known kinematic quantities. By varying θ, the angle between the nuclear spin and the direction of momentum transfer, it is possible to pick out the longitudinal and transverse pieces of the quasi elastic spin dependent cross section. In particular, if $\theta = 90^\circ$, the asymmetry is proportional to G_{E_n}/G_{M_n}. Knowing G_{M_n} the electric formfactor can be determined.

The first method uses a polarised deuterium (or 3He) target, either as a ultra thin gas target in an electron storage ring, or a solid state target (ND$_3$)$_{10,11,12}$, or a dense 3He gas target, in an external electron beam. In case the polarisation asymmetry is measured using vector polarized deuterium, it will be necessary to measure the recoil neutron in coincidence with the scattered electron to veto against the much larger asymmetry effects from the polarized proton in the deuteron. Model calculations show (Figure II.2) that the polarization asymmetry is linearly dependent on G_{E_n}/G_{M_n} as long as the recoil neutron is

![Figure II.2](image_url) Double polarization asymmetry A_{ed} for various assumptions on G_{E_n}, and different interaction models.

![Figure II.3](image_url) Projected data for a measurement of G_{E_n} at CEBAF using recoil polarization techniques.

A more precise determination of this parameter would be very interesting since Λ_{QCD} is not well determined from other measurements.
emitted at small angles with respect to the direction of the virtual photon. In this region the influence of the deuteron wave function on the extracted value of G_{Ep}/G_{Mn} is almost absent. A quantitative check can be accomplished by measuring the proton asymmetry at the same time, and by comparing it to the asymmetry obtained with a polarized hydrogen target (e.g. ^3H). For ^3He nuclear corrections are not negligible\(^{17}\) and will have to be carefully studied when extracting G_{En}.

Employing state of the art polarized target technology it appears feasible to measure G_{En} for Q^2 up to 0.5 GeV\(^2\) with a 1 GeV electron beam, and up to 2 or 3 GeV\(^2\) using a 4 GeV beam. Projected error bars for a measurement at CEBAF which employs the recoil polarization techniques are shown in Figure 11.3.

The polarization techniques discussed above can also be used to measure the electric formfactor G_{Ep} of the proton. Most promising in this respect appears to be the recoil polarization techniques using an unpolarized hydrogen target\(^{18}\), and the measurement using a polarized ^3H target\(^{19}\). With a 4 GeV beam values of Q^2 up to 5 GeV\(^2\) can be reached with either techniques. Recent achievements in polarized target technology\(^{20}\) may allow one to push this limit to even higher values.

II.3 Nucleon Resonance Transition Formfactors

A large number of resonances, attributed to the excitation of the nucleon have been observed in hadron scattering, the $\Delta(1232)$ being the most prominent one. Electroexcitation of resonances on the free nucleon yields information on the $\gamma p N^*$ vertex as a function of Q^2 (Figure II.4). The transition into a specific excited state is described by three amplitudes $A_{1/2}(Q^2)$, $A_{3/2}(Q^2)$, $S_{1/2}(Q^2)$, where A and S refer to transverse and scalar coupling, respectively, and the subscripts refer to the total helicity of the $\gamma p N$ system (frequently, the electromagnetic multipoles $E_{1\pm}$, $M_{1\pm}$, $S_{1\pm}$ are used instead). Inclusive measurement of $\gamma N \rightarrow X$, or $eN \rightarrow eX$ reveal a few broad bumps, clearly indicating the excitation of resonances in the mass region below 2 GeV. Their broad widths and close spacing makes it impossible to separate them in inclusive production reactions. By explicit measurement of the decay products such as πN, ηN, ρN, $\pi\Delta$, and others, it is possible to identify them according to their spin and isospin assignments.

The physics issues one hopes to study are manifold, and address fundamental questions about the interaction of quarks and gluons in confined systems. Specifically, one would like to study how the transition between the 3-quark ground state and excited states is mediated. Most models assume that the excitation is due to a single quark transition. However, recent studies\(^{21}\) indicate that double quark transitions may be present at a non-negligible level. Measurement of the Q^2 evolution
of the transition formfactors provides information about the wave function of the excited state. The
helicity asymmetry

\[A_{1/2,3/2} = \frac{A_{1/2}^2 - A_{3/2}^2}{A_{1/2}^2 + A_{3/2}^2} \]

for the transition into some excited states, like the \(D_{13}(1520) \) or \(F_{15}(1688) \), was found to be sensitive
to the potential that confines the valence quarks inside the nucleon. At high momentum transfer
one may observe the transition from the non-perturbative to the perturbative regime, where power
law rules for the helicity amplitudes are predicted to apply such that:

\[A_{1/2} = C_1/Q^2 , \quad A_{3/2} = C_2/Q^5 , \quad Q^2 \to \infty \]

if logarithmic terms are neglected. Whether this regime can be reached at the available energies
(e.g. 4 GeV at CEBAF) is an open question. None the less, it will be interesting to push studies of
the helicity structure of nucleon resonance excitations to the highest possible \(Q^2 \).

The QCD motivated extension of the non-relativistic quark-model predicts many states, in par-
ticular at higher masses, which have not been observed in \(\pi N \) reactions. Theoretical calculations indicate that the "missing" states tend to decouple from the \(\pi N \) channel, which would explain why they have not been seen in elastic \(\pi N \) scattering. Our picture of baryon structure could drastically change if these states did not exist. Several of these states are predicted to couple strongly to photons (real or virtual) and may thus be searched for in photon- or electroproduction experiments. A
complete program to study nucleon resonance transitions, e.g. in \(\gamma pN \rightarrow \pi N \), involves measurement
of 6 (4 in photoproduction) complex, parity conserving amplitudes.

\[H_i := <\lambda_p;\lambda_N|T|\gamma_i,\lambda_p> = <0;\pm \frac{1}{2}|T|\pm 1,0;\pm \frac{1}{2}> \]

which makes it necessary to measure at least 11 independent observables, not counting additional
measurements to resolve quadratic ambiguities. Experiments involving unpolarized particles only,
allow measurement of only 4 response functions \(\sigma_T, \sigma_L, \sigma_{TT}, \sigma_{LT} \):

\[\frac{d\sigma}{d\Omega} = \sigma_T + \varepsilon \sigma_L + \varepsilon \sigma_{TT} \cos 2\phi + \sqrt{2}(1+\varepsilon)\sigma_{LT} \cos \phi , \quad \sigma_i = \sigma_i(H_1,...,H_6) \]

Measurement of polarization observables yield information on many response functions (table)

<table>
<thead>
<tr>
<th>Response Functions in Electron Scattering</th>
<th># Response Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>unpol. cross section</td>
<td>4</td>
</tr>
<tr>
<td>polarized e beam</td>
<td>1</td>
</tr>
<tr>
<td>polarized target</td>
<td>8</td>
</tr>
<tr>
<td>pol. beam/pol. target</td>
<td>5</td>
</tr>
<tr>
<td>recoil polarization</td>
<td>8</td>
</tr>
<tr>
<td>pol. beam/recoil pol.</td>
<td>5</td>
</tr>
</tbody>
</table>

I want to illustrate the significance of polarization measurements for this program with two examples,
the \(\gamma pA^+(1232) \) and the \(\gamma pP_{11}^+(1440) \) transitions.
11.3.1 The Transition $\gamma_p \rightarrow \Delta^+(1232) \rightarrow N\pi$.

In SU(6) symmetric quark models this transition is explained by a simple quark spin-flip in the $L_{3Q} = 0$ ground state, corresponding to a magnetic dipole transition M_{1+}. The electric and scalar quadrupole transitions are predicted to be $E_{1+} = S_{1+} = 0$. In more elaborate QCD based models which include color magnetic interaction arising from the one-gluon exchange at small distances, the $\Delta(1232)$ acquires an $L_{3Q} = 2$ component, leading to small electric and scalar quadrupole contributions (e.g. $|E_{1+}/M_{1+}| \approx 0.01$ at $Q^2 = 0$). The ratio $|E_{1+}/M_{1+}|$ is predicted to be weakly dependent on Q^2. At very high Q^2 QCD predicts $E_{1+}/M_{1+} \rightarrow 1$, and $S_{1+}/M_{1+} \rightarrow 0$. Precise measurements of these contributions from $Q^2 = 0$ to very large Q^2 are obviously important for the development of realistic models of the nucleon. Present experimental information about E_{1+} is shown in Figure II.5, together with model predictions. The quality of the data is clearly not sufficient to discriminate against any of the models. Experiments at MIT-Bates and CEBAF are in preparation to measure the electric and scalar quadrupole transition over a large Q^2 range, using polarized electron beams and/or recoil polarimeters. In these experiments one obtains information about the terms

$$M_{1+}, \ Re(E_{1+}M_{1+}^*), \ Re(S_{1+}M_{1+}^*), \ Im(E_{1+}M_{1+}^*), \ Im(S_{1+}M_{1+}^*).$$

The imaginary parts of the bilinear terms can only be accessed using polarization degrees of freedom. They are particularly sensitive to phase relations between the multipoles. If the multipoles were strictly in phase, these terms would vanish identically.

11.3.2 The Transition $\gamma_p \rightarrow P_{11}^{1/2}(1440) \rightarrow N\pi$.

The Roper resonance P_{11} has a modestly strong photocoupling at $Q^2 = 0$, but in electron scattering there is little evidence for its excitation both, in the inclusive cross section and in exclusive single pion production at $Q^2 < 1 GeV^2$. In an analysis of single pion production data at $Q^2 = 1 GeV^2$, a small positive value was found for the $A_{1/2}(P_{11})$ amplitude. At $Q^2 = 0$ this value is larger and negative. One may speculate that the apparent quenching of the Roper at $Q^2 > 0$ might be accidental and related to a zero crossing of the transverse amplitude. The P_{11} may then be expected to "reappear" at higher Q^2. In fact, non-relativistic as well as relativized quark models predict the $A_{1/2}(P_{11})$ amplitude to grow relative to the $\Delta(1232)$. In non-relativistic models $A_{1/2}(P_{11})/A_{1/2}(\Delta) \sim Q^2$, so that the P_{11} would dominate at high Q^2.

![Figure II.6 Predicted cross section for $\gamma_p \rightarrow p\pi^+$ at $Q^2 = 1 GeV^2$, $\epsilon = 0.8, \theta_\pi = 0$, using the amplitudes of G. Kroesen. The sensitivity to the (small) amplitudes of the Roper resonance is shown (left). Predicted target asymmetry T_e for the same kinematics (right). The sensitivity to the Roper and the $S_{11}(1535)$ is shown. The dashed-dotted line is obtained when the nearby S_{11} resonance amplitudes are switched off. Note that the dominant S_{11} amplitude is known to better than 20%.

\[\begin{align*}
\text{Figure II.6} & \text{ Predicted cross section for } \gamma_p \rightarrow p\pi^+ \text{ at } Q^2 = 1 GeV^2, \epsilon = 0.8, \theta_\pi = 0, \text{ using the amplitudes of G. Kroesen. The sensitivity to the (small) amplitudes of the Roper resonance is shown (left). Predicted target asymmetry } T_e \text{ for the same kinematics (right). The sensitivity to the Roper and the } S_{11}(1535) \text{ is shown. The dashed-dotted line is obtained when the nearby } S_{11} \text{ resonance amplitudes are switched off. Note that the dominant } S_{11} \text{ amplitude is known to better than 20%.}
\end{align*}\]
It has been pointed out that the dominance of the P_{11} at high Q^2 will be a crucial test of the quark model classification as a $N=2$ radially excited state. Measurements with polarized proton targets, or proton recoil polarization measurements can provide a strong signature for the excitation of this resonance in electron scattering experiments. Figure II.6 shows the sensitivity of the unpolarized cross section and the polarized target asymmetry T_p in $\gamma p \to p\pi^+$ to the P_{11} amplitudes. Clearly, measurement of polarization observables will have an important impact on the determination of the photocoupling amplitudes of the Roper.

II.4 Meson Photoproduction from Nucleons

II.4.1 Photoproduction of π Mesons

Single pion photoproduction experiments have a long history, and a large body of data has been generated over more than two decades of experiments at various laboratories. The goal has been to extract the 4 complex helicity amplitudes H_1, \ldots, H_4 that completely specify the single pion production process. Data are needed in different isospin channels, like $\gamma p \to p\pi^+$, $\gamma p \to n\pi^+$, and $\gamma n \to p\pi^-$. Such a complete set of data would then allow one to determine the photocoupling amplitudes of the N^* and Δ resonances in a model independent fashion. At least 9 independent measurements are needed at each kinematic point $(E_{\gamma}, \theta_{\gamma}^*)$, including 5 double polarization measurements. Much cross section data and single polarization data have been accumulated, and recent measurements have focussed on obtaining the missing information from the double polarization experiments. Figure II.7 and II.8 show recent results from the Yerevan 4.5 GeV electron synchrotron, in the 2_{1d} and 3_{1d} nucleon resonance region. The sensitivity to the ingredients of various phenomenological analysis is shown as well. The same analysis that correctly predicted the π^\pm results, fails in the $n\pi^+$ channel, which demonstrates the importance of measurements in different isospin channels. Unfortunately, the impact of this data on an extraction of the resonant amplitudes in a phenomenological fit would likely be small, because of the large error bars.

II.4.2 Photoproduction of η Mesons

At the Bonn stretcher ring ELSA preparations are under way to measure the target asymmetry in the reaction $p(\gamma, p)\eta$ in the region of the $S_{11}(1535)$ nucleon resonance. Only two of the known nucleon resonances, the $S_{11}(1535)$, and the $P_{11}(1710)$, have a significant branching ratio into the $N\eta$ channel. The $P_{11}(1710)$ has been proposed as a possible candidate for a hybrid state (three valence quarks, one valence gluon). Precise measurements of the photocoupling amplitudes for proton and neutron targets are needed to clarify the assignment of this state as a conventional Q^2 or an exotic Q^2G state. If the $P_{11}(1710)$ is a hybrid state then $A_{1/2}(P_{11}) = 0$, and $A_{3/2}(P_{11}) \neq 0$. An experimental program, including polarization measurements, for a complete measurement of this channel should prove extremely interesting, and would be far less complex than the corresponding program for the $N\pi$ channel.

II.4.3 Photoproduction of Strange Particles

At CEBAF a program to study the reaction $\gamma p \to K^+\Lambda \to p\pi^-$ is in preparation. This reaction has been studied very poorly in the past, with the result that the production mechanism is not understood. If one takes a diagrammatic approach, one can hope to extract information about the $K\Lambda N$ and $K\Lambda N^*$ coupling constants. Coupling constants, extracted from existing photoproduction data disagree with the ones extracted from hadronic processes. Recent calculations indicate that measurement of the Λ recoil polarization, as well as measurement of the beam asymmetry, are very sensitive to specific ingredients of the model, and assumptions about the coupling constants.

An efficient experimental program to study polarization degrees of freedom in the $K\Lambda$ channel requires use of large acceptance detectors with nearly 4π solid angle coverage. At CEBAF such a detector is under construction for one of the three experimental endstations. With such an instrument, detailed polarization data can be obtained for this reaction. For example, the Λ polarization can be inferred from an analysis of its π^-p decay. Using a longitudinally polarized electron beam, circularly polarized bremsstrahlungs photons can be generated, and the polarization transfer reaction $\gamma p \to K\Lambda$ can be studied as well.
Figure 11.7 Double polarisation asymmetry O_x at $\theta^* = 80^\circ$ for the process $\gamma p \rightarrow p\pi^0$ in the region of the $2\pi_1$ and $3\pi_1$ nucleon resonance. Data from Yerewan23. The curves are predictions of phenomenological analyses. Solid line: Metcalf and Walker71.

II.4.4 Drell-Hearn Gerasimov Sum Rule.

The result of the polarized proton structure functions measurement has triggered new interest26,37 in experimental tests of the sum rule of Drell-Hearn38 and Gerasimov39:

\[
\int_{\nu_{\text{thr}}}^{\infty} \frac{d\nu}{\nu} \left[\sigma_{1/2}(\nu, 0) - \sigma_{3/2}(\nu, 0) \right] = -\frac{2\pi^22\alpha k^2}{M^2},
\]

where ν is the photon energy, $\sigma_{1/2}$ and $\sigma_{3/2}$ are the absorption cross sections for total helicity $1/2$ and $3/2$, and k is the anomalous magnetic moment of the target nucleon. The sum rule has been derived on rather general grounds but has never been tested experimentally, although an analysis of single pion production experiments allows to place some limits on by how much it may be violated40. Using a circularly polarized tagged photon beam, generated by longitudinally polarized electrons, and polarized NH_3 as target material, the total absorption cross section difference $\sigma_{1/2} - \sigma_{3/2}$ can directly be measured as a function of the photon energy. The integral is weighted by $1/\nu$, therefore the lower energy regime, in particular the resonance region give the largest contributions. Existing or planned medium energy accelerators are the appropriate instruments for testing this sum rule.

III. STRUCTURE OF THE DEUTERON.

III.1 Elastic Electron-Deuteron Scattering

In elastic eD scattering, the hadronic current is specified by 3 isoscalar electromagnetic formfactors, G_C, G_Q, G_M, which are related to the charge, electric quadrupole moment, and magnetic dipole moment, respectively. The charge formfactor, in particular, is very sensitive to the short range part of the N-N potential, and to the size of isoscalar meson exchange currents. Rosenbluth separation of the unpolarized elastic eD scattering cross section allow separation of

\[
G_M^2, \ G_Q^2 + \frac{8}{9} \tau^2 G_Q^2 ; \quad \tau = Q^2/4M_D^2.
\]

Information about G_C and G_Q separately can only be obtained in measurements of polarization observables.

In the absence of a polarized electron beam, one can either measure the tensor polarisation components of the recoil deuteron in $D(e, e' D)$, or alternatively measure the analyzing power in $D(e, e' D)$.
The first method was used in two measurements at MIT-Bates. The second method was employed in experiments at the Novosibirsk VEPP-2 and VEPP-3 storage rings with a polarized D$_2$ gas target. A Bonn group, working at the 2.5 GeV synchrotron used a dynamically polarized ND$_3$ target. For a tensor polarized target the elastic scattering cross section is given by:

$$\frac{d\sigma}{dt} = \left(\frac{d\sigma}{dt}\right)_0 \left[1 + T_{20} t_{20} + 2 T_{21} Re(t_{21}) + 2 T_{22} Re(t_{22}) \right]$$

T_{20} appears to be most sensitive to G_S. If the magnetic component can be neglected (at forward angles, and $\tau G_M^2 \ll G_Q^2$, $\tau^2 G_Q^2$)

$$T_{20} \approx -\sqrt{2} \frac{\tau G_Q (3 \tau G_Q + 2 G_C)}{G_Q^2 + \frac{3}{2} \tau^2 G_Q^2}$$

The interference term $G_S G_Q$ makes T_{20} a particularly suitable quantity to measure. Figure III.1 shows the present experimental situation. Only the most recent results from MIT-Bates have sufficient sensitivity to allow discrimination between some of the models. Clearly, the asymptotic scaling model which predicted T_{20} to asymptotically approach the value $-\sqrt{2}$ is ruled out in the Q^2 range where data are available.

As we have heard during this conference new measurements are being planned at Novosibirsk with 100 times higher target densities. Also, polarized solid state target technology has advanced to a point where improvements of similar magnitude appear feasible. These advances may allow to push the measurements to higher momentum transfer, as well as to improve the statistical significance at lower Q^2.

III.2 Disintegration of the Deuteron

III.2.1 Photodisintegration

To a large degree recent polarization measurements have been prompted by the observation of an unexpectedly large proton recoil polarization seen in a Tokyo experiment near 550 MeV photon energy. The result was interpreted as an indication for the excitation of intermediate dibaryon states. In the energy region of the $\Delta(1232)$ new measurement of the proton recoil polarization have become available from Kharkov (Figure III.2), which allow to test various model calculations. In general,
Figure 111.2 Recent results on proton recoil polarization measurements in deuteron photo disintegration48, and polarized neutron capture. Top: Non-relativistic calculations using various NN potentials: Bonn (dotted), Argonne V14 (dashed-dotted), Argonne V28 (short dashes), RSC (long dashes), RSC/nSO (solid). Bottom: Coupled channel calculations by Tanabe \& Ohta50 (dotted), and Leidemann \& Arenhove46 (IA: dashed, IA+IC: dashed-dotted, IA+IC+MEC: solid).

Figure 111.3 Bonn data51 on the analyzing power A_y in deuteron photodisintegration using a polarized ND_3 target. Non-relativistic calculations by Leidemann \& Arenhove50 (dashed-dotted), and relativistic calculations by Laget48 (dashed), and Kang53. Note that the calculations agree on the position of the zero crossing.

Recent results on proton recoil polarization measurements in deuteron photo disintegration48, and polarized neutron capture. Top: Non-relativistic calculations using various NN potentials: Bonn (dotted), Argonne V14 (dashed-dotted), Argonne V28 (short dashes), RSC (long dashes), RSC/nSO (solid). Bottom: Coupled channel calculations by Tanabe \& Ohta50 (dotted), and Leidemann \& Arenhove46 (IA: dashed, IA+IC: dashed-dotted, IA+IC+MEC: solid).

Non-relativistic calculations describe the data well, when IC and MEC are included, in a coupled channel approach46, or in unitary theory45, and there is no apparent need for including dibaryon states into the calculation.

Figure 111.3 shows results of a target asymmetry measurement carried out at the Bonn 2.5 GeV synchrotron51 using a polarized ND_3 target. The data exhibit an energy dependence, which can presently not be explained in calculations using conventional models. A partial wave fit indicates that the angular distribution at 550 MeV requires a $J_{max} = 2$ angular momentum contribution, which could indicate the excitation of an intermediate $J=2$ state. However, in the analysis of the Tokyo data $J_{max} = 4$ yielded the best fit. It would clearly be desirable to collect good statistics data in smaller energy bins that would allow one to study the energy dependence in more detail. Also, analyses that make use of all existing data including angular distributions of the unpolarized cross section, could provide better constraints on exotic contributions to the process.

Polarized photon asymmetries have recently been measured at the Yerevan synchrotron52. An energy spectra is shown in Figure 111.4. The 90° low energy data (≤ 0.5GeV) can be described by conventional model calculations. An interesting feature is the apparent failure of the coupled channel calculation46 compared to the impulse approximation result in the same model. The data extend to 1GeV photon energy, and there is a clear need for the development of theoretical models in the higher energy regime. If one displays the beam asymmetry difference

$$\Delta \Sigma = \Sigma(180^\circ - \theta_p) - \Sigma(\theta_p)$$
one is able to test isospin properties of the $\gamma D \rightarrow pn$ amplitudes. The generalised Pauli principle requires $\Delta \Sigma = 0$ for pure isospin states. Non-zero values indicate interferences between isoscalar and isovector amplitudes. The data are shown in Figure III.5. Some theoretical calculations that reproduce the beam asymmetry data at 90° reasonably well, clearly fail to pass this isospin test. The calculation by Laget58 that includes the $P_{11}(1440)$ baryon resonance does comparatively better, which indicates that the excitation of higher mass resonances with isospin $\frac{1}{2} (P_{11}(1440), S_{11}(1533))$ may play an important role in this process.

II.2.2 "High Energy" Photodisintegration

Recently, there has been much speculation about the result of an experiment carried out at SLAC54, where the photodisintegration cross section was measured for energies up to 1.55 GeV. A striking feature is that around 1 GeV the data appear to follow precisely the power law behaviour of

$$\frac{d\sigma}{dt} \propto \frac{1}{\sqrt{s}}$$

(\sqrt{s} is the cms energy) that was predicted by dimensional quark counting rules (Figure III.6).

![Figure III.4 Beam asymmetry Σ for deuteron photodisintegration. Data from Adamian et al.36. Calculation by Leidemann & Arenhovel18 (IC: dotted, full CC: solid), and Laget53 (dashed-dotted). The lines that extend to 0.6 GeV are the result of a phenomenological analysis that includes various dibaryon states. (dashed line: nonresonant contributions only).]

![Figure III.5 Beam asymmetry difference $\Sigma(45°) - \Sigma(135°)$. Same calculations as in Figure III.4.]

![Figure III.6 Deuteron photodisintegration cross section multiplied by $s^{\frac{1}{2}}$. The data indicate dimensional scaling for energies above 1 GeV. Model calculation by T.S. Lee53.]

![Figure III.7 Proton recoil polarization in deuteron photodisintegration at $\theta_p^m = 120°$.]
A calculation based on conventional theory fails to reproduce this particular behaviour. We may ask the question, what can we learn about the process by looking at polarization observable. At asymptotic energies QCD makes a simple prediction about the nucleon recoil polarization: $P_n \rightarrow 0$. Proton recoil polarization data relevant for this discussion have in fact been measured at Kharkov. Some of the data are shown in Figure III.7. The trend is obviously quite different from the asymptotic QCD predictions; the data show nearly maximum recoil polarization at high energies, $P_n \rightarrow -1$. These results are obviously in serious disagreement with the simple counting rule interpretation of the cross section data.

III.2.3 Electrodisintegration

Unpolarized measurements of the electrodisintegration reaction have revealed the importance of mesonic exchange reactions near the threshold for deuteron breakup. Other measurements have revealed the importance of Δ isobar contributions. The study of polarization observables is largely a matter of future experiment. At MIT-Bates and CEBAF experiments are under consideration to study this reaction using polarized electrons, proton recoil polarimeters, and vector polarized deuterium targets, in non-parallel kinematics.

$$D(\vec{e},ep)n \quad (1), \quad D(\vec{e},ep)n \quad (2), \quad \vec{D}(\vec{e},ep)n \quad (3)$$

The first process yields new information only when the measurement is carried out in out-of-plane kinematics, where the proton is measured out of the electron scattering plane. A number of theoretical studies have been carried out indicating that the reaction (1) is largely sensitive to final-state interactions, whereas (2) and (3) may reveal properties of the deuteron wavefunction, and of meson exchange contributions. Some of the results are displayed in Figure III.8, which shows the double polarization asymmetry for the reaction (3) in quasi-elastic kinematics. With increasing Q^2 the asymmetry becomes very sensitive to assumptions about the NN potential and MEC's.
III.3 Coherent π^0 Photoproduction from Deuterons

Another source of information about the two-nucleon system is coherent π^0 production off deuterons $\gamma D \rightarrow D\pi^0$. The process is sensitive to the NN dynamics in the two-nucleon system, and to possible excitations of dibaryon resonances. This reaction has recently been studied at Yerevan, using a linearly polarized coherent bremsstrahlung beam. The results are shown in Figure III.9. Theoretical models that include impulse approximation (IA) and rescattering terms (RS) describe the beam asymmetry Σ qualitatively for energies up to about 600 MeV. At higher energies the theoretical description fails qualitatively, even when predicted dibaryon states are included in the calculation. Lack of knowledge of the deuteron wavefunction at short distances may be responsible for this discrepancy.

IV. PHOTOPRODUCTION OFF LIGHT NUCLEAR TARGETS.

Data on polarization observables become very sparse for nuclei other than the deuteron. Also, the interpretation of the data becomes more ambiguous as final state interactions become increasingly important. However, in some cases, one may be able to reduce effects from FSI by measuring polarization asymmetries. A Kharkov group has studied the beam asymmetry for various nuclei in (γ, π^\pm) and (γ, p) reactions, for energies in the region of the $\Delta(1232)$, where strong pion absorption usually prohibits the study of the initial photo-absorption mechanism, when pions are detected in the final state. When measuring the polarized beam asymmetry

$$\Sigma = \frac{\sigma_T(\pi^\pm) - \sigma_P(\pi^\pm)}{\sigma_T(\pi^\pm) + \sigma_P(\pi^\pm)}$$

FSI largely drop out in the ratio. The results for (γ, π^-) are shown in Figure IV.1. Σ is nearly independent of the target mass, which indicates that a quasi-free production mechanism dominates.

![Figure IV.1 Beam asymmetry in the $\Delta(1233)$ region, for inclusive π^- production from nuclei. Data from Zybalov et al.]

V. PARITY VIOLATION IN ELECTRON SCATTERING EXPERIMENTS.

In low and medium energy ($Q^2 \ll M^2_{\pi^\pm}$) neutral current interactions the parity violating contributions arise from the interference between the one-photon exchange and the neutral weak boson Z^0 exchange graphs (Figure V.1). In electron scattering the interaction contains an isoscalar as well as an isovector piece in both, the vector (V_μ) and the axial vector (A_μ) coupling. The relevant piece of the Lagrangian can be written like

$$L_{ps} = \frac{G_F}{\sqrt{2}} \cdot [\bar{e}\gamma_\mu\gamma_5(e\delta V_\mu^a + \tilde{\gamma}V_\mu^a) + \bar{e}\gamma_\mu(e\delta A_\mu^a + \delta A_\mu^a)]$$
where $\tilde{\alpha}$, $\tilde{\beta}$, $\tilde{\gamma}$, $\tilde{\delta}$ denote the electro-weak coupling constants which have to be determined experimentally. By choosing appropriate kinematical conditions for electron scattering from nucleons and nuclear targets, the couplings can be determined by a set of four linearly independent measurements. The famous SLAC $D(e,e')X$ experiment63, in conjunction with atomic physics experiments enabled a model independent measurement of $\tilde{\alpha}$ and $\tilde{\gamma}$.

V.1 The Mains Parity Experiment

Recently, an experiment at Mains64 was completed that measured at backward electron scattering angles, emphasizing a different combination of the coupling constants which allowed extraction of the combination $\tilde{\beta} + 0.04\tilde{\delta} = 0.005 \pm 0.17$. This result is displayed in Figure V.2 in the terms of the quark coupling constants $C_{2d} = (-\tilde{\beta} + \tilde{\delta})$ and $C_{2w} = (\tilde{\beta} + \tilde{\delta})$, where the results of the SLAC experiment and of neutrino-hadron scattering experiments are shown as well. Although a factor of three improvement compared to the previous state of affairs has been achieved in the axial vector coupling sector, the result still allows for a vanishing axial vector interaction ($\tilde{\beta} = \tilde{\delta} = 0$). Using results of the previous experiments $\tilde{\beta}$ and $\tilde{\delta}$ could be separated, and their respective values determined to

$$\tilde{\beta} = -0.04 \pm 0.19, \quad \tilde{\delta} = 1.07 \pm 1.83.$$

Assuming the validity of the Standard Model the coupling constants are related to the weak mixing angle θ_W in the following way:

$$\tilde{\alpha} = -(1 - \sin^2\theta_W), \quad \tilde{\beta} = -(1 - 4\sin^2\theta_W), \quad \tilde{\gamma} = \frac{2}{3}\sin^2\theta_W, \quad \tilde{\delta} = 0$$

With $\sin^2\theta_W = 0.232 \pm 0.004$ it is obvious that the result of the Mains experiments is in agreement with this value. However, the precision of the experiment is not sufficient to have impact on the determination of $\sin^2\theta_W$.

V.2 The MIT-Bates Parity Experiment

Another experiment to measure parity violation in $^{12}C(e,e')^{12}C$ has recently been completed at MIT-Bates65. This experiment measured directly γ, the isoscalar piece of the vector coupling with the result

$$\tilde{\gamma} = 0.136 \pm 0.032 \pm 0.009,$$

which is in agreement with the prediction of the Standard Model of $\tilde{\gamma}_{SM} = 0.155$.

Figure V.1 Lowest order Feynman diagrams which contribute to parity non-conservation in electron scattering at low and intermediate energies.

Figure V.2 Diagram for the quark coupling constants C_{2d} and C_{2w}. The areas allowed by the Mains and SLAC experiments, and by neutrino-hadron scattering are indicated.
It appears the most important outcome of both experiments is the demonstration that polarized electron scattering experiments allow control of systematic errors much below the 10^{-7} level.

V.3 The SAMPLE Experiment at MIT-Bates

A new experiment\(^5\)\(^6\) has been approved for MIT-Bates to measure parity violation in elastic electron-proton scattering at backward angles. In this case the asymmetry depends on the elastic electromagnetic formfactors F_1, F_2, and the neutral weak formfactors F_3, F_4. The latter one is related to the proton anomalous moment coupling to the neutral weak current. In the Standard Model, and invoking strong isospin symmetry, F_4^2 can be related to the electromagnetic formfactors like

$$F_4^2 = \left(\frac{1}{2} - \sin^2 \theta_W \right) F_2^2 - \frac{1}{4} F_2^2,$$

where F_4^2 is a singlet piece which arises from equal contributions of all three quark flavors. Since it contains contributions from strange quarks it is sensitive to the possible presence of large $s\bar{s}$ contributions to the proton structure\(^6\). Large $s\bar{s}$ contributions have been suggested from two sources. Firstly, the analysis\(^6\) of the pion-nucleon sigma term $(\Sigma_{\pi N})$ suggests a 30% $s\bar{s}$ contribution to the proton rest mass. Secondly, the spin-dependent structure functions of the proton, measured by the EMC collaboration have been interpreted\(^6\) to indicate that the strange sea is polarized opposite to the nucleon spin. The parity violating asymmetry in elastic ep scattering is given by:

$$-\frac{2g \sigma_{kl}}{\sqrt{2} \alpha} \left[2rtg^2 \frac{\xi}{2} (F_1^2 + F_2^2)(F_1^2 + F_4^2) + (F_1^2 F_4^2 + \tau F_1^2 F_2^2) - (\frac{g + \xi}{2}) t g^2 \frac{\xi}{2} (1 - 4\sin^2 \theta_W) G_1 (F_1^2 + F_2^2) \right],$$

where $\xi = F_1^2 + \tau F_2^4 + 2rtg^2 \frac{\xi}{2} (F_1^2 + F_2^2)$. At large electron scattering angles the first term dominates. The term with G_1 is suppressed since $(1 - 4\sin^2 \theta_W)$ is small. Since $F_4^2 \ll F_2^2$ the asymmetry is essentially proportional to F_2^2, and the term of interest F_4^2 can immediately be extracted.

VI. CONCLUSIONS/OUTLOOK

Measurements of polarization observables in photoabsorption and in electron scattering processes have already generated information relevant for understanding the structure of the nucleon and deuteron. Interest in polarization aspects of intermediate energy physics has sharply risen in recent years as the physics possibilities have become more clearly visible. The experimental tools (polarized gas and solid state targets, proton and neutron recoil polarimeters, and polarized electron sources), which are necessary to exploit these possibilities are under continued development. Their most efficient exploitation will be possible at the new DC electron machines which are now under construction. In conjunction with the use of large acceptance detectors and high precision magnetic spectrometers these instruments will help generate data which are essential for the study of fundamental properties of nucleons and nuclei.

REFERENCES.

8. R. Holt, S. Popov, private communications (1990)
9. R. Miller, invited contribution, presented at this conference.
10. V.D. Burkert, Lecture Notes in Physics 234, 228 (1986)
11. T. Reichelt, private communication (1990)
13. A.K. Thompson et al., contributed paper 18C to this conference.
C6-298 COLLOQUE DE PHYSIQUE

18 C. Perdrisat , private communications; see also: V. Punjabi et al., contributed paper 10C.
26 R. Lourie (Spokesperson), Bates Proposal 89-03, C. Papanicolas (Spokesperson), Bates Proposal 87-09
27 V. Burkert (Spokesperson), CEBAF Proposals PR-89-37, PR-88-42
32 M. Garcon, invited talk presented at this conference
33 S. Ayvazian et al., H.H. Vartapetian, private communications (1990)
35 G. Anton, private communications
36 T. Barnes, F. Close, Phys. Letts. 133B, 89 (1983);
39 S. Matone , invited contribution at this conference , parallel session C.
46 E. Avakian et al. (1990), contribution by H. Vartapetian, parallel session C.
47 M. Leget, private communication, presented in Ref.49
49 T.S. Lee, Argonne National Laboratory, Physics Division, Report PHY-8625-TH-88.
50 C.E. Carlson, private communication (1990)
54 Y. Mclniki, A.V. Shebeko, contributed papers 18C and 18G.
56 K.B. Ganenko, V.A. Gushin et al., private communications by P.V. Sorokin (1990).
57 C.Y. Prescott et al; PL 77B, 547 (1978); PL 84B, 54 (1979)
59 S. Kowalski, invited talk presented at this conference
60 E. Beise et al, Bates Proposal 89-08 (1989)
63 see the discussion by T.L. Jaffe, invited talk at this conferences
64 R. Madey, private communications (1990)
66 M. Garcon, invited talk presented at this conference