POSSIBILITIES OF FORMATION OF BRIGHT EBIC CONTRASTS DUE TO CRYSTAL DEFECTS IN SILICON

H. Blumtritt, M. Kittler, W. Seifert

To cite this version:

H. Blumtritt, M. Kittler, W. Seifert. POSSIBILITIES OF FORMATION OF BRIGHT EBIC CONTRASTS DUE TO CRYSTAL DEFECTS IN SILICON. Journal de Physique Colloques, 1989, 50 (C6), pp.C6-183-C6-183. <10.1051/jphyscol:1989637>. <jpa-00229668>

HAL Id: jpa-00229668
https://hal.archives-ouvertes.fr/jpa-00229668
Submitted on 1 Jan 1989

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
POSSIBILITIES OF FORMATION OF BRIGHT EBIC CONTRASTS DUE TO CRYSTAL DEFECTS IN SILICON

H. BLUMTRITT, M. KITTLER* and W. SEIFERT*

*Academy of Sciences of the D.R.G., Institute of Semiconductor Physics, DDR-1200 Frankfurt, D.R.G.

Besides the usual, well understood dark recombination contrasts, also bright EBIC contrasts can be found at extended crystal defects in silicon. Often they appear as bright haloes around dark contrasts, but sole bright contrasts are observed, too.

Different mechanisms may lead to the formation of such phenomena, thus rendering clear identification of the contrast origin difficult sometimes.

The poster discusses the possible origin of bright-contrast phenomena, except phenomena caused by microplasmas and surface structure. The following effects are illustrated by examples:
- doping inhomogeneities
 - contrast due to increased width of the junction space-charge region
 - contrast due to plasma screening
- lifetime enhancement within getter zones
- charge collection by defect-own space-charge regions
- repulsion of minority carriers by charged defects
- other, injection-dependent effects.

Up to now there are no models available to describe these contrast phenomena in a quantitative manner.