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RESUME 

Des d6p6ts de n i t ru re  de bore, Blabores h p a r t i r  de melanges gazeux BF3-NH3 dans des 
conditions C V I  e t  deposes dans des preformes f ibreuses ou su r  des subs t ra ts  plans de 
carbure de si l icium ont  etB caract&ris&s par XRD, AES. XPS e t  TEM. Ces d&p6ts sont 
non stoechiom6triques e t  poss6dent du bore en exces (N:B a t  = 0,6  - 0,8)  a in s i  
qu'une quanti te  non negligeable d'oxyghe. L'unite s t ruc tu ra l e  de base s e  compose 
d'hexagones quasi pa r f a i t s .  L'arrangement des couches e s t  typiquement turbostrat ique 
(dOo2 = 3.64 A ; LC = 28 A ) .  Ces empilements sont  aleatoirement or ien t& au se in  du 
dep6t mais tendent a s ' o r i en t e r  parallelement B l ' i n t e r f ace  proche du subs t ra t .  Le 
d6p6t comporte des pores submicroscopiques, une f a ib l e  dens i te  (1.6 - 1.9 g.cm-3) e t  
une cer ta ine  nanoporosit6 ( 8  - 22 % ) .  La microstructure e s t  semblable b c e l l e  du 
pyro-carbone &labore dans des conditions s imi la i res .  

ABSTRACT 

BN-films deposited, from BF3-NH3 mixtures under CVI-conditions, e i t h e r  within 
porous Sic  f i be r  preforms o r  on plan sintered S i c  subs t ra tes ,  have been 
characterized, a t  a submicron sca le ,  by XRD, AES, XPS and TEM. The deposits a re  non- 
stoichiometric with an excess of boron (N:B a t .  = 0.6 - 0.8) and contain a 
s igni f icant  amount of oxygen. The basic s t ruc tu ra l  un i t  is  an almost perfect 
hexagonal r ing.  The stacking of the hexagonal layers is  turbos t ra t ic  (do02 = 3.64 %r 
; LC= 28 A ) .  The BN layers  a r e  randomly orientated i n  the bulk of t he  deposit but 
tend t o  be aligned pa ra l l e l  t o  the in ter face  near the subs t ra te  surface. The deposit 
contains numerous submicroscopic pores. It has a low density (1.6 - 1.9 g.cm-3) and 
a s igni f icant  nanoporosity (8 - 22 %).  The main features of the  microstructure a re  
s imi lar  t o  those of pyrocarbon deposits. 

INTRODUCTION 

Boron n i t r i d e  obtained by chemical vapor deposition (CVD) has been used f o r  many years 
i n  electronic devices and high temperature e l e c t r i c a l  engineering on the bas is  of its high 
e l ec t r i ca l  r e s i s t i v i t y ,  high thermal conductivity and good chemical i n e r t i a  /I/. In  a 
d i f ferent  f ield,  BN-based ceramic matrix composites (CMC), obtained by chemical vapor 
i n f i l t r a t i o n  ( C V I )  of a porous preform made of ceramic f i be r s ,  have been suggested a s  an 
a l te rna t ive  t o  carbon-carbon f o r  applicat ions a t  high temperatures i n  a i r .  A s  a matter of 
f ac t ,  hexagonal boron n i t r i d e  has a c rys t a l  s t ruc ture  very s imi lar  t o  t ha t  of graphite, a 
high refractoriness and a be t t e r  resistance towards oxidation ( the  oxidation of carbon i n  
a i r  begins a t  about 6 0 0 ' ~  whereas t ha t  of hex-BN takes place above 8 0 0 - 9 0 0 ~ ~ ) .  I n  the f i r s t  
s tudies ,  the goal was t o  use boron n i t r i d e  a s  a matrix 12-6/. 

More recently,  the use of hex-BN as  a coupling interphase between the  f i be r s  and the 
matrix, has been suggested fo r  improving the toughness of CMC. It i s  now well established 
tha t  the outstanding toughness ( i . e .  s imi lar  t o  tha t  of l i g h t  a l loys)  of f ibrous CMC is 
d i r ec t ly  re la ted  t o  weak fiber-matrix bonding (which allows fiber-matrix debonding/friction 
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and f i b e r  pu l l  out  phenomena absorbing energy and thus increasing the  work of f rac ture  and 
toughness). Regarding the high temperatures a t  which they a r e  processed. CMC a r e  normally 
characterized by a strong f iber-matrix bonding and a b r i t t l e  behavior. Therefore. 
control l ing the  fiber-matrix bonding during processing is of key importance. One of the  most 
e f fec t ive  way t o  weaken the  fiber-matrix bonding i n  CMC is t o  introduce a mechanically s o f t  
material a t  the  in ter face .  It has been shown tha t  pyrocarbon, with its layered s t ruc ture  
f u l f i l l s  t h i s  requirement /7-9/. However, i n  oxidizing environments t he  advantage of the 
pyrocarbon interphase is l o s t  a t  high temperatures. The use of i ts  boron n i t r i d e  counterpart 
has been studied i n  a var ie ty  of S i c  (Nicalon) f i b e r  composites ( t he  matrix being zirconia 
o r  zircon, mull i te .  glass-ceramics and s i l i con  carbide) i n  order t o  keep high toughness 
values under severe environmental conditions ( i . e .  high temperatures and oxygen containing 
atmospheres) /9-12/. 

The aim of the present work was t o  characterize,  from a physico-chemical standpoint. 
the s t ruc ture  and microstructure of the boron n i t r i d e ,  deposited under CVI-conditions, 
e i t he r  on plan subs t ra tes  o r  within porous f i b e r  preforms, from a BF NH3 precursor 
according t 6  a process which has been described i n  d e t a i l s  elsewhere /2/. &e analyses of 
the BN deposits were performed by X-Ray Photoelectron Spectroscopy (XPS). Auger Electron 
pectroscopy (AES) and Transmission Electron Microscopy (TEM). 

EXPERIMENTAL 

The deposits which have been studied were obtained, under low pressure CVI-conditions, 
from BF3-NH3 gas mixtures (with an atomic NH3/BF3 r a t i o  higher than one) a t  a temperature of 
about 9 5 0 ~ ~ .  More d e t a i l s  about the experimental conditions a r e  given i n  /2/. 

The analyses were performed : (i) on f ibe r s  extracted from dry S i c  (Nicalon) f i be r  
preforms a f t e r  they have been consolidated with a small amount of boron n i t r i d e  by C V I  ( i .e .  
a t  a s t ep  corresponding t o  the deposition of the BN-interphase i n  the processing of Sic-Sic 
composites) and (ii) on plane sintered Sic  (1) subs t ra tes  which have been treated 
simultaneously. 

Due t o  the  dimensional difference between the  space resolution of the  XPS-apparatus ( 2 )  
( i . e .  about 150 w) and the  s i ze  of the Sic  f i be r s  (mean diameter : 15 Llm), the XPS analysis 
were performed e s sen t i a l l y  on plane S i c  subs t ra te  with BN deposits  t o  have be t te r  
r e l i a b i l i t y  about chemical analyses and spectrum deconvolution. One analysis  on BN coated 
Sic  f i be r s  is  a lso  (P . The Auger electron spectroscopy analyses (AES) were performed, 
with a microprobe having a space resolution be t t e r  than 1 p. on both BN-coated Sic 
f ibers  and plane s in tered  S i c  subs t ra tes ,  thus allowing a comparison with the resul t s  
obtained by ESCA. 

The transmission electron microscopy (TEM) experiments w e r e  run on th in  f o i l s  prepared 
by ultramicrotomy from BN-coated Sic  f ibers .  The chemical composition of the BN-deposits was 
determined by electron energy lo s s  spectroscopy (EELS) whereas t h e i r  s t ruc ture  and 
microstructure were studied by electron d i f f rac t ion  as well a s  by extended energy lo s s  f ine  
s t ruc ture  (EXELFS) a f t e r  mathematical treatment of the EELS spectra (giving the radia l  
d is t r ibut ion  function (RDF) i . e .  the  surrounding i n  f i r s t  neighbors of a given atom) /13/. 
Complementary s t ruc tu ra l  data were obtained by conventional X-ray d i f f r ac t ion  (XRD) .  

RESULTS AND DISCUSSION 

(1) Chemical composition 

A s  shown i n  f i g .  1, the chemical composition of a BN-deposit obtained on a plane 
substrate under low pressure CVI-conditions is  homogeneous but not stoichiometric ( t h i s  
being confirmed by XPS a s  i t  i s  apparent from table  I ) ?  the N:B atomic r a t i o  ranging from 
0.6 t o  0.7. The same r e s u l t  is a lso  deduced f o r  boron n i t r i d e  deposited on S ic  f ibers .  on 
the bas is  of EELS analyses (N:B = 0.7 - 0.8) of spec t ra  s imi lar  t o  t h a t  of f i g .  2. 
Therefore, there is a good agreement between the experimental da ta  whatever the  morphology 
of the subs t ra tes  on which BN was deposited and the  analy t ica l  method. It is  noteworthy tha t  

11) from Ceramiques e t  Composites, m SSI 301, PHI-590, @7 PHILIPS EM 400 T 



a s imi lar  non-stoichiometry has been a lso  reported by G. Lacrambe f o r  boron n i t r i d e  
deposited under close CVI-conditions from BC1 NH gas mixtures within porous f i b e r  preforms 
161. Therefore, a low nitrogen concentration ?;it; respect  t o  stoichiometric BN) seems t o  be 
a general feature of the BN-deposits obtained from BX3-NH3 mixtures (with X = F, C 1 )  a t  low 
temperature and pressure. 

Furthermore and a s  shown i n  f i g .  1-2 and tab le  1 ,  there is a s igni f icant  amount of 
oxygen (i. e. 10 - 15 % a t . )  i n  the BN deposits obtained by C V I  from BF3-NH3. A s  shown i n  
f ig .  3,  the  deconvolution of the B I s  peak obtained by XPS suggests the  occurrence of two 
d i f f e r en t  kinds of chemical bonding involving boron atoms : ( i )  t h a t  cha rac t e r i s t i c  of hex- 
BN ( a t  190.2 eV) and (ii) an addit ional  chemical bonding ( a t  191.6 eV) which could 
correspond t o  a boron atom simultaneously bonded t o  oxygen and nitrogen, on the bas is  of the 
binding energies reported f o r  B Is i n  B2O3 (193.5 eV) and hex-BN (190.3 eV). 

This s h i f t  of the  B Is binding energy re la ted  t o  the  presence of oxygen i n  hex-BN has 
been already mentioned by V.G. Aleshin e t  a l .  (binding energy : 191.6 e V  f o r  11 a t .  % 
oxygen) and G. Lacrambe (binding energy : 192.5 eV f o r  oxygen atomic concentrations higher 
than 20 %) 16, 141. The B 1s binding energy s h i f t .  which is observed when the oxygen 
concentration is increased, suggests t ha t  oxygen is  present within the c rys t a l  network 
(possibly i n  nitrogen vacancies, regarding the low N : B r a t i o  mentioned above ; tab le  I) 
and has been introduced i n  the material a t  high temperatures during the f i lm deposition 
processing. 

2- Texture and microstructure 

A s  a matter of f a c t ,  few s tudies  have been devoted i n  the pas t  t o  the characterizat ion 
by TEM of hex-BN deposits. A s  a r e su l t ,  t h e i r  texture and microstructure remained poorly 
known up t o  now. 

On the  bas is  of the r e su l t s  of the present study, i t  appears tha t  the BN fi lms,  
deposited from BF3-NH3 mixtures, exhibit  the main features already reported fo r  pyrocarbon 
deposits obtained a t  low temperatures ( f i g .  4 )  1151. The material is  made of stacks of 
turbos t ra t ic  BN layers  highly curved and contains numerous submicroscopic pores (mean 
diameter : 5 - 8 nm ; s h e l l  thickness : 4 - 12 nm) . I n  the  very v i c in i ty  of the f i b e r  ( i . e .  
within about 10 nm), the BN layers have a tendency t o  be aligned pa ra l l e l  t o  the f i be r  
surface whereas they a r e  randomly orientated beyond t h i s  distance,  a s  shown by the  electron 
microdiffraction pa t te rns  (STEM configuration) given i n  i n s e r t s  i n  f i g .  4 /16/. Thus, the 
s t ruc ture  of BN i n  the deposits obtained from BF3-NH3 a t  about 9 5 0 " ~  appears t o  be 
turbos t ra t ic .  

The dhkl values a s  w e l l  a s  the  mean thickness of the  BN layers  (LC) w e r e  derived from 
both XRD and e lec t ron  d i f f rac t ion  patterns and a re  given i n  tab le  2. The low s t a t e  of 
c rys ta l l iza t ion  of the  BN deposits obtained under C V I  conditions is  evidenced from the 
ra ther  high do02 and low LC values. It is  noteworthy tha t  H. Tagawa and K .  I s h i i  1171 as 
well a s  T. Matsuda et  a l .  1181 had already mentioned the  strong e f f e c t  of the deposition 
conditions of BN (e.g. temperature and pressure) on do02 and LC, t h e i r  da ta  being i n  good 
agreement with those given i n  tab le  2. 

The analysis  of the f i n e  s t ruc tures  of the EELS spectra and more par t icu lar ly  those 
occuring a f t e r  the ionizat ion edge of a given element (EXELFS) can be used t o  derive its 
atomic surrounding 1131. However, i n  the  case of Boron Nitr ide due t o  the  poor distance 
between the Boron and Nitrogen K edges (188 e V  and 400 e V  respectively f i g  2 ) ,  the EXELFS 
analysis  is l imited t o  the first and second neighbors /19/. The interatomic distance B-N, B- 
B and N-B, N-N deduced from the  EXELFS treatment ( f i g  5-6). f o r  t he  BN films deposited from 
BF3-NH3 under C V I  conditions a r e  given i n  tab le  3. They a re  close 40 the values which ar: 
known fo r  hex-BN 1201. The mean BNB angle can be evaluated a t  123 . It is close t o  120 
charac ter i s t ic  of sp2 atomic o r b i t a l  hybridation. Those r e su l t s  confirm t h a t  Boron-Nitrogen 
loca l  ordering is an almost perfect  hexagon. 

The theore t ica l  density of the BN deposit has been calculated on the  bas is  of the 
EXELFS and d i f f rac t ion  data. A s  expected, it has been found to  be s igni f icant ly  lower than 
tha t  of well ordered hex-BN (i . e . 2.07 and 2.27 g. cm-3, respectively)  . From the measured 
value (i.e. 1.6 t o  1.9 g.cm-3). the  porosity of the BN fi lm deposited under CVI-conditions, 
was estimated t o  be of 8-22 %. This range of porosity corresponds t o  a low density BN 
according t o  the  c l a s s i f i ca t ion  proposed by T. Matsuda e t  a l .  ( = 1.5 - 1.9 g. cm-3 ; Vp = 4 
- 30 %) /21/. 
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3- BN deposition model 

According t o  T. Matsuda e t  a1./21/, polymeric atom c lus t e r s  a re  formed i n  the gas phase 
near t he  substrate.  When these c lu s t e r s  a r e  adsorbed on the hot subs t ra te  surface,  they 
undergo a thermal decomposition. When the amount of c lu s t e r s  is too high, a long range 
ordering of the  boron and nitrogen atoms is no longer k ine t ica l ly  possible and the deposit 
is  made of randomly orientated stacks of BN layers and of pores (low density BN deposits) 
/21/. It is noteworthy t h a t  L.E..Boravitch et a l .  have suggested tha t  B3N3H3C13 c lus ters  
could be formed i n  the vapor phase p r io r  t o  the adsorption and surface reaction ( i .e .  
thermal decomposition with an evolution of HC1 and incorporation of the  boron and nitrogen 
atoms t o  the deposit) s teps  /22/. 

It is  suggested t h a t  s imi lar  polymeric c lu s t e r s  could be formed from BF /NH i n  the 
vapor phase, adsorbed on the hot subs t ra te  and decomposed, thus explaining tie J i f f e r en t  
microstructures which have been observed i n  the BN deposit.  I n  such a model, the alignment 
of the BN layers  i n  the close v i c in i ty  of the  f i b e r  surface could be the r e s u l t  of ( i )  a low 
concentration of c lu s t e r s  within the in terva l  of the f i be r  preform a t  the beginning of the 
i n f i l t r a t i o n  process which is consistant  with a low deposition r a t e  /23/ and (ii) a 
substrate e f f ec t  /24/, thus allowing k ine t ica l ly  the ordering of the hexagonal B-N f i r s t  
layers. Later  on, when a steady s t a t e  is  reached, the number of c lu s t e r s  i n  the vapor phase 
within the in terva ls  of the preform is  thought t o  be higher with the r e s u l t  t ha t  : (i) an 
ordering of the  B-N layers  is no longer k ine t ica l ly  possible and ( i i )  t he  microstructure of 
the BN deposit  becomes random with numerous micropores. 

CONCLUSION 

On the  bas is  of complementary analy t ica l  methods ( i . e .  AES. XPS, TEM, XRD), the 
composition, c rys t a l  texture and microstructure of BN films deposited from BF3-NH3 mixtures 
under CVI-conditions, have been characterized. The deposits a r e  non-stoichiometric (excess 
of boron with respect  t o  N:B = 1 atomic r a t i o )  and contain a s igni f icant  amount of oxygen. 
Despite t h i s  contamination by oxygen, the basic s t ruc tu ra l  un i t  seems t o  be an almost 
perfect  hexagonal ring. The c rys t a l  s t ruc ture  based on hexagonal layers  is  turbos t ras t ic .  
The microstructure is s imi lar  t o  t h a t  of a pyrocarbon deposited a t  low temperature. It is  
characterized by submicroscopic pores and stacks of BN-layers which a r e  randomly orientated 
i n  the bulk and p a r a l l e l  t o  the f i be r s  i n  the  close v i c in i ty  of the  fiber-interphase 
boundary. 

The authors thank M. Monthiowt (Laboratoire Marcel Mathieu - Pau) f o r  h i s  advice. 
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Fig 
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1 : AES depth p ro f i l e s  f o r  boron (B-KLL), nitrogen (N-KLL), oxygen (0-KLL), 
s i l i con  (Si-LVV) and carbon (C-KLL) recorded through a BN-film deposited 
on a plane Sic-sintered substrate (BN sputtering r a t e  : 9 A .  min-1). 

Table 1 : Composition of pyro-BN deposited on plane Sic  s in tered  
substrates o r  S i c  (Nicalon) f i be r  within a porous 
preform, from BF3-NH3 mixtures 

Analyses 

AES 

EELS 

XPS 

Materials 

plane Sic  substrate 
S i c  f i b e r  

SIC f i b e r  

plane S i c  subs t ra te  
S i c  f i be r s  

N:Bat. r a t i o  

0.6 - 0.7 
0.7 

0.7 - 0.8 

0.6 - 0.7 
0.67 

0 : B a t .  r a t i o  

0.2 
0.2 

0.1 - 0.2 

0.2 
0.27 
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Fig 

Fig 3 : Deconvolution of the B 1s XPS peak for BN deposited on a Sic substrate 
from a BF3-NH3 mixture under CVI conditions. 
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(a )  BN 
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Fig 4 : TEM analys is  of BN deposited within a porous preform on a SIC (Nicalon) f i b e r  : 
( a )  br ight  f i e l d  image of the  microtexture ( a  micropore is shown by an arrow), 
( b )d i f f r ac t i on  pa t te rn  of the  BN deposi t  f a r  from the  f i b e r  sur face  and 
( c )  microdiffract ion pa t te rn  (STEM configuration) of the aligned BN layers  near the  
f i b e r  surface.  
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Table 2 : Crystallographic spacings and LC values for pyro-BN as 
obtained from electron and X-ray diffraction (data for 
hex-BN are given for the purpose of comparison) 

Table 3 : Distances between first neighbors obtained 
from EXELFS data (uncertainty : 0.02 A) 

Material 
(Method) 

hex-BN 

pyro-BN 
(TEM) 

pyro-BN 
(XRD) 

3.33 

3.65 

3.63 

2.16 (101) 

2.12 

2.14 

in pyro-BN (A) 

1.44 

1 44 

2.55 

2.52 

Chemical bonds 

N - B 

B - N  

N - N 

B - B  

1.084 (202) 

1.07 

- 

1.25 (112) 

1-23 

- 

in hex-BN (A) 

1.446 

2.504 

L 
(1) 
- 

28 

27 



Boron-K edge at 188 eV 

(1) 0.98 A B-N (1.44 A) 
(2) 2.1 1 A B-B (2.52 A) 
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( a )  (b) 

Fig 5 (a )  : Magnitude of the  Boron K edge with the EXELFS modulation 
(b) : Radial d i s t r i bu t i on  fonction deduced from the  spec t ra  ( a )  ( t he  da t a  a r e  not 

corrected f o r  the  phase s h i f t )  
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Fig 6 (a )  : Magnitude of the  Nitrogen K edge with the  EXELFS modulation 
(b)  : Radial d i s t r i bu t i on  fonction deduced from the  spec t ra  ( a )  ( the  da ta  a r e  not 

corrected fo r  the  phase s h i f t )  

(2) Nltrogen-K edge at 400 eV 
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