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MOLECULAR THEORY OF ATOMIC COLLISIONS WITH PROPER SCATTERING BOUNDARY
CONDITIONS

G. HOSE

Institut fir Festkérperforschung der Kernforschungsanlage Jiilich,
Postfach 1913, D-5170 Jilich, F.R.G.

Résumé.— Nous présentons une formulation de la théorie moléculaire des collisions atom-
iques qui satisfait les conditions aux limites de diffusion, et ce sans avoir recours a la
notion de facteur de translation électronique.

Abstract.— We present a formulation of the molecular theory of atomic collisions satis-
fying correct scattering boundary conditions, without resorting to the notion of electron
translation factor.

1. Introduction

The molecular model of slow ion-atom and atom-atom collisions, or the perturbed-
stationary-state method [1], has been widely used in studying inelastic processes like
charge exchange and impact excitations {2-6]. The basic idea is to expand the scattering
wave function in adiabatic Born-Oppenheimer (BQO) electronic states. These states
are usually assumed to couple non-adiabatically by the relative motion of the nuclei,
i.e. through the action of the corresponding kinetic-energy operator. The molecular
model is known to suffer from two fundamental difficulties {7,8]. The first problem
s that proper scattering boundary conditions are not satisfied, as the non-adiabatic
(NA) matrix elements are not necessarily vanishing asymptotically. Secondly, the NA
matrix elements are not translationally invartant. That is, they depend on the molecular
origin chosen for the coordinate system of electrons. The common approach [9] to
remove these difficulties has been to modify the BO electronic functions by an electron-
translation factor (ETF). The ETF is a nuclear-velocity phase-like term that takes
account of the fact that in the asymptotic limit the electron actually "travels” with
"its” nucleus. The couplings between the ETF modified functions vanish asymptotically,
so that scattering boundary conditions are fulfilled. However, the couplings change
also in the molecular region thereby affecting the scattering cross section. Aside from
the requirement for proper asymptotic behaviour the form of the ETF is arbitrary
[5]. Several ETF optimization methods [2-6] are currently in use, but we shall not
review them. Our purpose here is to show that a molecular model of atomic collisions
which satisfies scattering boundary conditions can be formulated without the ETF. For
simplicity we shall consider a diatomic molecule made of one electron and uneven nuclei
A and B having charge and mass Z 4; m, and 7,; m,, respectively. Atomic units are
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employed in all the equations.

2. Adiabatic electronic states.

To describe the relative motions of the electron and the nuclei A and B two internal
vectors are required. In a molecular frame they are of the general form [5,10],

-

R=ﬁn—ﬁA; F:Ff—p}?A—qﬁD; ptg=1, (1)

where 7, fiA and iiza are the instantaneous positions of the electron and the nuclei in
the laboratory frame. In these coordinates the BO Hamiltonian reads

1 VA Z Z,Z
= _Z4a _ 2B 4, Z7A”B
Hyo = =30, - 74— T2+ =42, (2)
where A, is the Laplacian in ¥ and
F,=7—qR; 7, =7 +pR. (3)

The Hamiltonian (2) describes the motion of a rest-mass electron in the cylindrical
electrostatic field of the nuclei 4 and B separated by a fixed distance R. The adiabatic
electronic states are the eigenfunctions of H, satisfying

Hyo(B,7) o = Ua(R) ¥ (B, 7), )

where o denotes all the one-electron quantum numbers. The BO energy U, depends
implicitly on R which determines the cylindrical electrostatic field. The adiabatic func-
tions {¢o} depend also on the relative orientation of the nuclei {10,11] through 7. It
is convenient to describe 7 in a body-fixed frame whose z-axis coincides with E. This
way the electronic functions have cylindrical symnmetry and belong to the irreducible
representations of the point group Ceor [4,10,11).

The adiabatic electronic basis {¥,} is complete at every R. Let us now examine
its behaviour in the large R limit. Since R is constant in the BO approximation, then
Ay = A,»A = A,p, and Hp, can be broken in two ways

Hyo=H,+Vy=Hp+V,, (5)
where
1 Z Z 72,7
H,==—--A, ——4; V,=—-—FB 4“4 B 6a
ATTT TR T TR R (6
zZ Z 7,7
HB ==—1A, - =z, VA=—_‘—A~:+—AJ. (6b)
2 8 1, |7y — R| R

Here H, (H,) is the Hamiltonian of one rest-mass electron moving in the central field
of nucleus 4 (B), and V,, (V,) is the electrostatic pertnrbation of nucleus B (A) situated
at a distance R from the center. It is clear that in the imit B — co H, goes either to
H, or to Hy. The asymptotic adiabatic basis and spectrum {¢..}; {U.} are, respectively,
the union of the atomic bases and spectra {$,}; {U.} and {&;}; {U,} satisfying

H (7)8a(7) = Ua®a(7y), (7a)
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H(75)2(7p) = Un&i(7p) - (78)

The adiabatic electronic basis is therefore partitioned into two channel subsets {4}
and {¢3} according to the limiting behaviour of the BO functions and energies,

i g = B i Un = U, (5

In other words, neglecting electron mass-polarization (EMP) effects (see below) the
adiabatic electronic functions are the correct asymptotic states of the electron. For this
reason alone it does not make sense to modify these functions by an ETF. It is shown
below how to impose correctly scattering boundary conditions in the molecular model.

3. Scattering equations in the molecular frame.
Consider the charge exchange system
A+ Bt « At + B. (9)

In order to write the scattering equations it is convenient to separate first the center-of-
mass (COM) motion of the two nuclei and the electron. To that end a set of internal-
motion coordinates must be decided on. The molecular-frame vectors (R,#) defined
in (1) are inappropriate for scattering as the limit R — oo implies r — oo as well.
That is, in the asymptotic limit the molecular model forbids free atomic species and
prevents thereby imposing scattering boundary conditions [11]. A correct internal frame
for collisions must have the distance between the COM of the atomic species as the
scattering coordinate. Usually there are several such coordinates as the limiting atomic
species depend on the asymptotic channel. Let us designate the channels in our simple
system by the atom, i.e. where the électron resides. The left-hand side of (9) is therefore. -
channel A wheres channel B is on the right. The corresponding internal coordinates are
(F4,7y) and (55, 7y ), where 5, and j, are the nucleus-atom distance vectors given by

ﬁdzﬁn-(mA+1)_1(m_‘}-l‘A+i}) (10a)

Pp = (mp + 1) Ymy Ry +7e) - B, (105)

Separating the COM of motion the internal Hamiltonian of the system can be ex-
pressed in the two channel coordinate frames as follows

A g > =
H' =T, +T,, + H,(7,) + Vy(R, 7)), (11a)

B —
H =T, +Tep+ Hy(7p) + V,(R, 7). (11%)

where H,, (H,) and V, (V,) are defined in (6); Ty, (T;,) is the EMP in atom A (B),

= ——A, 2
Tga 2m,;A A (12a)
1
Tgp = - Gy A (128)

and T, (Tp) is the scattering-energy operator in channel A (B)
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1 1 3-1
= ; — 1
T 2u, 4’ Fa [mA+1+mB] ! (13)
1 1 1 -1
T, _E; rp i #p = [TI_l: —— 1] (13b)

Inspecting (11) we see that the channel internal Hamiltonians consist of the BO
Hamiltonian, either as H, + V, or H, + V4, and two kinetic-energy terms. The atomic

1 at most

EMP operators induce small shifts in the atomic energy levels, a few cm~
[12]). The effect on the atomic wave function is by far less, and can hardly influence the
scattering cross sections (see below). Neglecting the atomic EMP terms in (11), it is
clear that the adiabatic BO elecironic basis is a perfect choice to expand the scattering
wave function. Of course, one can expand also in the asymptotic atomic states, but
this expansion is slower convergent because the atomic states are unperturbed by the
molecular field. That is, in the molecular region the coupling between atomic states is
due to the electrostatic field of the second nucleus. The BO electronic functions, on the
other hand, adjust themselves infinitely fast to the change of field due to the motion
of the nuclei. In reality they cannot do so, resulting in dynamical couplings from the
action of the scattering-energy operators.

It is evidently computationally advantageous to work in the molecular frame where
the electronic functions and their couplings are easily obtained [13]. However, we must
express the the scattering-energy operators T, and T}, in terms of the molecular vectors
R and 7. This is achieved using the following transformations of the internal vectors

§=5A+(mA+l)_lFA; 7= [I-q(mA-f-l)_l]FA—-qﬁA, {14a)

R=jp—(mp+ 1)y 7= [1=plmy +1)717, + 95y, (148)

and applying the chain rule to the Laplacians in 5, and §,. In the molecular frame both
scattering-energy operators comprise three terms

Ty=Ty+Typ +Tgps Tp =Ty +Tyg +Tepy» (15)

where

1 ! g
Ty = _—ZZA”; Tye = ) {Va:V:r}s Ter = _EA" (16)

with { , } signifying anti-commutation relation, and g, f and g aie channel-dependent
mass factors

2

p=py;  f=-L;  g=1, (17a)
Fyu 7]
P r’

B=tp; f=;;; 9= (17b)

The operator T), is the kinetic-energy operator for the relative motion of the nuclei
along R. The second term Ty is a nuclear-electronic (NE) momentum coupling opera-
tor. The third operator Tg,, is an EMP term in the molecular frame. It arises because
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the reduced mass of the molecular electron differs from the atomic values. The NE
term expresses the fact that the electron is actually moving with its nucleus. In other
words, Ty assumes the role of the ETF. Combined NA, NE and EMP couplings are
translationally invariant for a given channel. They vary between the channels, but this
is obvious since the scattering-energy operators are different.

Transforming the atomic EMP terms (12) to the molecular frame using (14) and the
chain rule we obtain

__1 1 (m, +p) ) (m, +p)?

Tpa = =5 T T e (T Ve A A l, (18a)
_ 1 1 (mp +9) (mp +9)°

TEB - _2[ ms(mv + 1)2 R mB(mB + 1)2{vnyvr} + mD(mB + 1)2Ar ] . (185)

Comparing the result above with (15), (16) and (17), it is clear that by including the
atomic EMP terms the mass factors in the molecular-frame operators T}, T, and Ty,
have to be redefined. Quantitatively the change is minuscule, on the order of the re-
ciprocal atomic masses at most. It cannot affect inelatstic process in any meaningful
way. But the inclusion of atomic EMP in the molecular model prevents exact scat-
tering boundary conditions from being fulfilled. With atomic EMP there will always
be asymptotic couplings, réflecting the fact that the real atomic energies are slightly
shifted as compared with the adiabatic values satisfying (8). It4s therefore necessary to
neglect atomic EMP in the molecular model. The error introduced this way is mainly
in the scattering energy, and is definitely negligible. Notice that without atomic EMP
the internal channel Hamiltonians are slightly different.

Expanding the outgoing scattering wave function in the adiabatic electronic states
(4,11]

YR, 7) =3 xa(R)¥a(R,7), (19)

the Schrédinger equation for the internal Hamiltonian minus the atomic EMP terms,

can be reduced into a set of coupled equations for the scattering amplitudes xo
-1

(520 + UalR) ~ Elxa(R) = Ay 01 - N + By )xor(B). (20)

The amplitudes are coupled by a differential operator N whose spherical components
are given by [4,10]

R a

_9 é 1 @
R’

6 _ . - Z
N"= ? N = Rsin6 8¢ * (21)

N

-
Bl

The action of N as a function of R is scaled by the matrix elements of a first-derivative
electronic coupling operator A,

R_ 19 ik
A =p 0R+th;,

AP = —i[(uR)' Ly - fKL); (22)

A% = i[(pR) ™MLy — cot0L.) + fK,),



Cl-116 JOURNAL DE PHYSIQUE

where K and I are the linear and the orbital angular momenta of the electron. The
scattering amplitudes are also coupled by the matrix elements of a second-derivative
electronic operator B given by

B =Ty +Tyg+Tgy- (23)

4. Discussion

Equations (16), (17) and (19) to (23) describe the collision of a nucleus and a one-
electron atom in the molecular frame. Solving the coupled equations (20) gives the
exact scattering amplitudes {xq} in terms of the internuclear distance R. The molecular
model provides a unified description of all channels involved in the collision. The dis-
tinction between the channels is not via the channel-dependent scattering coordinate,
but through the mass factors (17) appearing in the operators (22) and (23) which couple
the adiabatic electronic states. As a result the coupling of states from different channels
is not hermitian. This is manifested, for example, in charge exchange cross sections (see

below).

In the molecular frame the coupling of adiabatic electronic states originates from sev-
eral sources. Firstly, there is-a NA term related to T, (e.g. /t_lz;oi—? or —i(uR)"'L,). This
is the dynamical coupling that is usually acconnted for in applications. Then there is a
NE term originating from Ty, (e.g. ifK. or ifK,). Lastly, we have an EMP part Tp,,,
but only in the second-derivative electronic operator B. To the knowledge of the author,
NE momentum couplings and EMP terms have always being ignored in molecular treat-
ments of atomic collisions. Momentum couplings enter the formulation whenever the
particles are described in moving frames. They are the analogne of noninertial forces
in a dynamical description which is not within the Hamiltonian framework. In this
respect NE and EMP interactions actually play the role that was originally assigned to
the ETF [9], i.e. they take account of the fact that the electron actually "travels” with
?its” nucleus. To see this notice that each individual NE and EMP matrix element is

origin dependent because of the constants f and g [see (17)]. This implies that the NA
matrix elements must be origin dependent, since the scattering-energy operator in each
channel is Galilean invariant. In other words NE and EMP terms correct for the origin
dependence of NA couplings. At the same time they also eliminate residual asymptotic
couplings. Suppose that the origin is selected on nucleus 4, so that ¢ = 0 and the cou-
pling elements appearing in channel-A4 rows of the coupled equations are precisely the
NA terms. From (8) it follows that with this choice the NA couplings of channel A must
vanish asymptotically [14]. This is certainly not the case for other origins, say, nucleus B
(7-9]. However, as the combined NA, NE and EMP coupling is translationally invariant,
it follows that NE and EMP terms render also the correct boundary conditions.
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Fig. 1. — Origin dependence of the coupling between states 2p7. and 3pn,.

Figure 1 depicts the dependence on R of matrix elements of the first-derivative
radial coupling operators p._‘a% (NA), ifK, (NE), and the combined invariant term
AR, between two states of ‘HeH** which dissociate to excited states of Het (channel
A). The invariant coupling in this figure is curve (a) which is the NA matrix element
computed with the origin placed on He**. It clearly goes to zero as R — co. Curves
(b) and (¢) are the same NA matrix element for the nuclear-COM and H* origins,
respectively. These two curves do not vanish asymptotically. Curves (d) and (e) are the
corresponding NE matrix elements. It is evident from figure 1 that the combined NA
and NE for each origin is curve (a). It should be emphasized that the invariant coupling
here is hermitian because the two electronic states dissociate to the same atom. The
situation is of course different with couplings of states belonging to distinct channels.
Figure 2 shows the first-derivative invariant radial coupling of two states of ‘HeHt+, one
dissociating to an excited state of Het while the other to the ground state of hydrogen.
There is pronounced difference between the coupling in the helium ion [curve (a)] and
hydrogen [curve (b)] rows of the coupled equations. The reason is the difference in
nuclear charge. Clearly He*? binds the electron more strongly than proton does, and
is less willing to lose it on impact. Hence, couplings in the Het channel are attenuated
as compared with those of H (see Fig. 2) The total charge-exchange cross sections in
collisions of H* and Het(n = 1) are indeed two to three orders of magnitude smaller
than when Het+ impacts on H(n = 1) {15,16].
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