ARE THE NEEL TEMPERATURE (TN) AND THE SUPERCONDUCTING TRANSITION TEMPERATURE (Tc) SIMPLY RELATED IN La2CuxO4-y UNDER PRESSURE?

B. Barbara, J. Beille, A. Draperi, H. Dupendant, G. Fillion, M. Maeder

To cite this version:

B. Barbara, J. Beille, A. Draperi, H. Dupendant, G. Fillion, et al.. ARE THE NEEL TEMPERATURE (TN) AND THE SUPERCONDUCTING TRANSITION TEMPERATURE (Tc) SIMPLY RELATED IN La2CuxO4-y UNDER PRESSURE?. Journal de Physique Colloques, 1988, 49 (C8), pp.C8-2139-C8-2140. 10.1051/jphyscol:19888957. jpa-00229238

HAL Id: jpa-00229238
https://hal.archives-ouvertes.fr/jpa-00229238
Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ARE THE NEEL TEMPERATURE \((T_N)\) AND THE SUPERCONDUCTING TRANSITION TEMPERATURE \((T_C)\) SIMPLY RELATED IN \(La_2Cu_xO_4-y\) UNDER PRESSURE?

B. Barbara, J. Beille, A. Draperi, H. Dupendant, G. Fillion and M. Maeder

Laboratoire Louis Néel, C.N.R.S., 166 X, 38042 Grenoble Cedex, France

Abstract. - We have investigated under high pressure a sintered \(La_2Cu_{1.02}O_{4-y}\) sample which exhibits bulk superconductivity below \(T_C \approx 37\) K and antiferromagnetic ordering below \(T_N \approx 240\) K. \(dT_N/dp\) has been determined using d.c. susceptibility and resistivity measurements under pressure. \(dT_c/dp\) and \(dT_N/dp\) are found to have opposite signs. This experimental result is confronted to the theory.

It is well known that \(La_{2-x}A_xCuO_4-y\) compounds \((A = Sr, Ba or Ca)\) are high \(T_C\) superconductors for \(x > 0.06\) with a maximum superconducting transition temperature \((T_C)\) of \(37\) K for \(x \approx 0.15\) \([1, 2]\). Moreover \(La_2Cu_xO_{4-y}\) \((0.98 \leq x \leq 1.04)\) annealed under oxygen have been found to be superconductors with \(T_C \approx 37\) K \([3]\).

On the other hand, antiferromagnetic order has been evidenced by neutron diffraction experiments in \(La_2CuO_{4-y}\) compounds \([4]\) in which values of the Néel temperature \((T_N)\) between 0 and \(\approx 300\) K have been reported to depend on the values of \(y\) \([5]\). \(T_N\) is found to decrease towards 0 for \(y\) approaching 0.

For the Ba-La-Cu-O compounds, it has been reported a large pressure effect on \(T_C\) which cannot be accounted for by phonon mediated B.C.S. theory. However less conventional models such as those based on charge and spin fluctuations could explain large \(dT_c/dp\) values \([6]\). In such models, the pressure effects on \(T_C\) and \(T_N\) are expected to be correlated. The knowledge of \(dT_N/dp\) can thus help to confirm or confirm the validity of these different models. In this work we report the first measurement of \(dT_N/dp\) in the high \(T_C\)'s superconductors.

This study was made on a \(La_2Cu_{1.02}O_{4-y}\) sintered sample from the same series than in \([3]\), exhibiting a superconducting transition temperature \(T_C = 37\) K.

Very low values of \(H_C\) are anticipated for our sample \([3]\). In a d.c. field of 1 Oe, the Meissner effect is 25%. In a low a.c. field of 2 \(\times 10^{-3}\) Oe, the diamagnetic susceptibility is 90% of \(-1/4\pi\) which shows the bulk nature of the superconductivity.

In figure 1 we show the temperature dependence of the magnetic susceptibility under fields of 1, 30 and 60 kOe respectively. The results are in agreement with a previous study \([7]\). The presence of a maximum in the \(\chi(T)\) curve is characteristic of the antiferromagnetic ordering. \(T_N\), defined as the inflexion point below the maximum, decreases under field. It takes the value of 240 K, 227 K and 124 K under 1, 30 and 60 kOe respectively, in agreement with a recent work \([8]\).

The magnetic susceptibility does not follow a well defined Curie-Weiss law above \(T_N\). The susceptibility under a 1 kOe field can be fitted by \(\chi(T) = x_0 + C / (T - \theta_p)\) with \(x_0 \approx 4.7 \times 10^{-5}\) e.m.u./mole/Oe in limited ranges of temperature. Depending on the temperature range, different values can be derived for the paramagnetic Curie temperature \(\theta_p\) and for the magnetic moment \(\mu\) per Cu ion, leading to \(\theta_p \approx 51\) K and \(\mu \approx 0.27 \mu_B\) for 300 K < \(T < 320\) K and to \(\theta_p \approx 240\) K and \(\mu \approx 0.12 \mu_B\) for 270 K < \(T < 290\) K, in agreement with previous works \([5, 8]\). Such a very rapid decreasing of the measured effective moment when the temperature decreases can be partly due to some 3D antiferromagnetic short range order. Those features imply a complicated nature of the antiferromagnetic order including ferromagnetic correlations and a temperature dependence of the magnetic moments.

We measured the d.c. field magnetic susceptibility of the sample under hydrostatic pressure (H.P.) up to...
Fig. 2. – Isobaric curves of (a) d.c. magnetic susceptibility, \(X \); (b) temperature derivative of the resistance, \(dR / dT \) (with vertical shifts for clearness); lower part: pressure variation of \(T_c \), \(T_m \) and \(T_1 \) (see text) for \(\text{La}_{2}\text{Cu}_{1.02}\text{O}_{4-\nu} \).

7.6 kbar in a self clamped little cell (of \(\approx 40 \) g weight) using a SQUID magnetometer. All parts of the cell are in non magnetic ST 125 Beryllium-Copper (Be-Cu). We used light hydrocarbon as pressure medium and lead as manometer. In the experimental range the cell contribution is diamagnetic. The maximum signal of the sample is only about 5/100 of the overall susceptibility. Curves of \(\chi (T) \) under different pressures are given in figure 2a. They exhibit a well-defined kink for a temperature \(T_m \), taken as characteristic of the magnetic ordering. \(T_m \) is found to decrease at a rate: \(dT_m / dp = -0.5 \) K/kbar.

For resistivity measurements under H.P. up to 18.7 kbar we used another self-clamped Be-Cu cell with the same pressure medium and manometer. On the resistivity curves, a large bump is associated to the magnetic ordering. The curves of \(dR/dT \) (Fig. 2b) exhibit a well defined minimum for a temperature \(T_1 \), taken as characteristic of the magnetic ordering. \(T_1 \) decreases under pressure at a rate: \(dT_1 / dp = -1 \) K/kbar.

On the other hand, we found that the superconducting transition temperature \(T_c \) (midpoint resistive transition) increases under pressure at a rate: \(dT_c / dp = +0.23 \) K/kbar, in agreement with a previous work [3].

Pressure effects on \(T_c \), \(T_m \) and \(T_1 \) are plotted in figure 2 (lower part). The Néel temperature \(T_N \) (average of \(T_m \) and \(T_1 \)) is estimated to decrease with pressure at a rate lying between -0.5 and -1 K/kbar.

In the resonating-valence-bond (R.V.B.)-like models based on strong short range interelectronic repulsions, the superconducting transition as well as the antiferromagnetic ordering are based on the same physical mechanism. In these models \(T_N \) and \(T_c \) depend on the hopping integral \(t \), leading to:

\[
\frac{d \ln T_N}{dp} \approx 2 \frac{d \ln t}{dp} \quad \text{and} \quad \frac{d \ln T_c}{dp} = \frac{d \ln t}{dp} \cdot f(p)
\]

where \(f(p) \) is a positive function of the pressure, depending on the exact nature of the R.V.B. model [6]. This is in apparent contradiction with our experimental results.

However, pressure effects on \(T_N \) may originate in considerations which are not taken into account by these models. Pressure may play a preponderant role on the correlation length as does doping [4]. This is in agreement with the suppression of \(T_N \) by quasihydrostatic pressure as we observed on the same sample [9]. Sensitivity of \(T_N \) on doping or pressure could originate from modifications of the balance between antiferro and ferromagnetic interactions. From references [10, 4] such ferromagnetic interactions come from Cu\(^{2+}\) spins pairs ferromagnetically coupled via an oxygen hole O\(^-\).

The presence of such competing exchange interactions leading to frustration might be responsible for the non trivial pressure variations observed. Therefore our results cannot constitute a definitive argument against the R.V.B.-like models, but they have to be taken into account.

[9] Beille, J. et al., to be published.