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Abstract. - Classical spin-wave theory predicts that the surface magnetisation MS (T) decreases with temperature twice 
as fast as in the bulk. It is shown that this result which contradicts experinient breaks down at temperatures as low 
as 1 % Tc. The local Ms (T) above these temperatures obeys a "pseudo T ~ / ~ "  law whose prefactor is determined by the 
local exchange. It is shown that "pseudo ~ ~ 1 ~ "  law holds also for magnetic interfaces and superlattices. 

The Bloch law for the bulk magnetisation 

holds up to temperatures T Tc/3. One of the classi- 
cal results of surface magnetism [I, 21 is that the Bloch 
law holds also for the surface magnetisation Ms (T) 
but with a prefactor Bs = ~ B B .  Measurements of 
Ms (T) for ferromagnetic metals using SPLEED [3], 
Mijssbauer spectroscopy [4, 51 and low-ener cascade 
electrons [6] confirm that Ms obeys a TsFlaw but 
with a prefactor Bs which is different for different sur- 
faces and can be as large as 5 . 4 B ~  [6]. 

The classical spin-wave theory thus fails to explain 
the much faster decrease of Ms (T) observed in metals. 
This is not surprising since it assumes no changes in the 
local magnetisation and exchange in the surface region. 
Neither of these assumptions is valid for metals. 

The fundamental theoretical question is, therefore, 
whether a softening of surface exchange or change of 
magnetisation near the surface can explain the ob- 
served large Bs whilst preserving the Bloch law. More 
generally, one may ask what effect, if any, has the soft- 
ening of exchange on other layer structures such as 
magnetic overlayers, interfaces and superlattices. We 
address all these questions by solving the overlayer 
problem first and then showing that any other layer 
structure can be reduced to an overlayer problem. 

1. Magnetic overlayer 

Consider an overlayer of N atomic planes above the 
(100) surface of a simple cubic ferromagnet. It is suf- 
ficient to describe this system by an exchange Hamil- 
tonian with nearest-neighbour exchange Jn, between 
spins Sn, Sm since all the interesting physics is already 
contained in this model [7]. The exchange and local 
spin in the overlayer are arbitrary but Jnn+l = J and 
Sn = S in the substrate. 

The surface spin deviation AMs (T) is given by 

where Ns (E) is the surface density (DOS) of spin-wave 
states. Ns (E) is given in terms of the spin-wave Green 
fuilction G = ( E  - H)-' in the mixed representation 
Gnm (9, E)  

Ns (E) = ( 1 1 ~ )  Tr Im GNN (9, E )  (3) 

where n, m label atomic planes parallel to the surface 
and the trace is over the components of the wave vector 
q in the overlayer surface plane located at n = N. 

To calculate Grim, we have developed a new recur- 
sion method [7, 81. The calculation of Gnm proceeds 
in the following steps: 

i) the overlayer is removed from substrate; 
ii) the exact Goo (q, E) in the now exposed surface 

plane of the substrate (n = 0) is known from the clas- 
sical spin-wave theory [2]; 

iii) the first atomic plane of the overlayer is rein- 
stated and the matrix element G11 of the Green func- 
tion in the new surface plane is determined recursively 
in terms of the old surface element Goo; 

iv) the procedure of depositing ''adlayers" is re- 
peated until the whole overlayer is "rebuilt" . After 
N recursion steps, we end up with the exact surface 
GNN in terms of Goo. 

The general recursion step from a layer n to the 
next layer n + 1 is deduced from the Dyson equation 
G = GO + G'WG, where W is a 2 x 2 perturbation 
matrix due to deposition of the adlayer n + 1. It takes 
the form 

(Gn+ln+l)-I = 
= w + Wn+ln+l- (1 - WnnGnn) , (4) 

where w = E - 6 s  J - 2 s  J (cos (q,a) + cos (q,a)) and 
W is expressed in terms of the local spin S,, Sn+l and 
local exchange integrals Jan, Jnn+l, Jn+ln+l within 
and between the layers n, n + 1 (see [7, 81). 

The recursion method gives an exact analytic result 
for the initial Ns (E) : 

AMs = lm 2p8NS (E) (exp (E/kT) - 1)-I dE, (2) N~ = ( S ~ / S ~ - l )  - 3 .  ( S I / ~ )  2 N ~  + O ( E ~ ' ~ )  1 

(5) 
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where NB (E) is the bulk DOS. Since AMs (T) in equa- 
tion (1) is normalised to Ms (0) , the surface spin SN 
in equation (5) is cancelled and we recover the classical 
result Bs = 2BB. It follows that neither softening of 
exchange nor a change of the magnetisation in an arbi- 
trary (finite) number of at. lanes near the surface has 9 any effect on the initial T3 law. This quite general 
result seems to  contradict the experiment [3-61. 

An explanation of this paradox is that the exact re- 
sult (5) holds only for infinitesimally low spin-wave 
energies. Softening of the exchange perpendicular to 
the surface results in a rapid crossover to a new de- 
pendence Ns (E) . This is illustrated in figure 1 for an 
overlayer of N atomic planes (N  = 1, 2, ..., 30) with 
a weaker exchange J' = 0.3 J between the planes. 
The new Ns (E) leads to a second extended region of 
"pseudo T3l2" law with Bs which depends strongly 
on J ' .  This is shown in figure 2 for a monolayer with 
J 1 / J  = 0.1, 0.3 and 0.6. The curve J 1 / J  = 0.3 is a 
perfect fit to the SPLEED data of [3] (circles). Most 
recent measurements [6] show that Bs / BB varies with 
doping of the surface between 2 and 5.4 thus confirm- 
ing that Ms (T) obeys the "pseudo" rather than clas- 
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Fig. 1. - Surface DOS for an overlayer with J 1 /  J  = 0.3 and 
N = l , 2  ,..., 30. 

sical T ~ / ~  law. We shall now show that the "pseudo 
T ~ / ~ "  law is a general feature of any layer structure. 

2. Magnetic interfaces and superlattices 

Consider an interface of N at. planes separating 
two homogeneous ferromagnets. To determine the lo- 
cal Green function G,,, we pass a cleavage plane be- 
tween the planes n, n + 1 separating the interface into 
two independent halves. Since each half is an over- 
layer. The Green functions for the left Gfi, and right 
GC+~,+~ surfaces can be calculated by the method of 
Sec. 1. Finally, the two halves are reconnected using 
the Dyson equation. It is clear from this construction 
that any interface is equivalent to two overlayers con- 
nected by an exchange link. The local magnetisation 
must, therefore, obey the "quasi T3l2" law. 

Consider next a superlattice with N at. planes in 
its unit cell. The superlattice is first cut by a cleav- 
age plme into two semi-infinite halves. Given the two 
surface Green functions G=,  GR, we reconnect the two 
halves to  obtain the exact local G. It remains to cal- 
culate G ~ ,  GR. 

Assume that the surface is at n = 0. We deposit 
on the surface, one by one, all the at. planes from 
the unit cell. This torms an overlayer and we use the 
method of Sec. 1 to express GNN in its surface in terms 
of Goo Since the surface at n = N is equivalent 
to  the old surface n = 0, we use the self-consistency 
condition GNN (GOO) = GOO and the recursion method 
for overlayers to compute Goo (i.e. GL and G ~ )  . The 
superlattice is reduced again to an overlayer problem. 

In conclusion, we have proved that the classical re- 
sult for surfaces Bs = ~ B B  breaks down at tempera- 
tures as low as 1 % Tc. Above these temperatures, the 
local M (T) in any layer structure obeys the "pseudo 
T~/'" law with a prefactor Bs which is determined 
by the local exchange. This explains not only all the 
existing measurements of Ms (T) but offers unique op- 
portuinity to determine the local exchange from the 
measured Ms(T) (see [6]). 
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