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Abstract. - The Double Sine-Gordon (DSG) model has been often used for describing anisotropic spin chains. We 
firstly present classical transfer matrix calculations of thermodynamic quantities. Secondly, the effects of the quantum 
fluctuations are taken into account by means of an effective potential, which was successfully used for SG models. 

1. Introduction 

One-dimensional non-linear field models have been 
extensively implemented for describing the magnetic 
chains [I]. Thermodynamics of some compounds were 
explained in terms of linear and non-linear excitations 
of classical integrable models like Sine-Gordon (SG) 
and non-linear Schroedinger equation [2]. The neces- 
sity to take into account quantum effects was later rec- 
ognized. However kink excitations are also present in 
non integrable fields like discrete SG and p4 so that 
a variational method was introduced [3] which can be 
successfully applied for both cases. 

In this paper we present classical and quantum ther- 
modynamics of the Double Sine-Gordon (DSG) model. 
This non integrable field [4] can map many condensed 
matter systems. For magnetic chains it has been used 
to study the linear magnetic optical birefringence of 
anisotropic spin chains (like CoBP, CDC, ...) 153. An- 
other interesting application of DSG regards the cou- 
pling of SG solitons induced by interchain interactions 
in quasi one-dimensional systems [6]. The vanishing 
of the magnetization can be explained in terms of the 
crossover between DSG and SG. 

2. T h e  DSG model 

+oo, drives continuously the system from a 2n - SG 
to a n-SG model. 

In the continuum limit (a 0, S2oa = co = const., 
x = (ai) Rl/co) the potential reads 

. , 
and it is known to admit, besides the absolute minima 
cpo (x) = 0, *2n, ..., local minimum configurations like 

(PK(x)= '$ ' (x+P)+$(x-P) ,  '$ '(2)=2tan- 'ex 
(4) 

with energy EK (p) = vpAco0l, up4 (1 + 2plsinh 2 ~ )  , 
i.e. the classical static DSG kink. It is apparent that 
this kink resembles a pair of T-SG kinks at distance 
2 ~ .  

We find it useful to introduce the following dimen- 
sionless parameters: t - T / E K ,  is the reduced tem- 
perature; R G !20/01, which is the n-SG kink length 
in lattice units, so that the length of the DSG kink 
is R. (1 + 2p). In the continuum limit R 4 co. Q r 
i i f l l / E ~ ,  is the "coupling constant" , and measures the 
degree of nonlinearity of the system. 

3. Quantum thermodynamics by effective po- 
tential  

The discrete DSG model is described by the follow- By use of the variational principle we have been able 
ing lagrangian to derive an effective potential [3], to be inserted in 

1 1 
the classical configurational integral, which yields a 

2 2 
L = A ~ C  [?+f - ,n: (pi - pi-l) - nlu (pi)] - very good approximation for the quantum partition 

i function in the low-Q regime. It reads 
Aa - C +f - (p) (1) KE (9) = ~a c [in: (pi - + n:u, (pi)] - 

i 
Z 

1 
where p = {pi) are dimensionless scalars on a periodic 

Fk 
- - x l n m i  (5) 

chain with N sites and spacing a. The potential V (9) P k  

contains a bilinear nearest-neighbour exchange term 
and a nonlinear single-site potential where 9 = pfi!&/2, $2: = 40: sin2 (ka/2) + 0: is the 

dispersion relation for the harmonic chain (k belongs 
1 tanh2 p to the first Brillouin zone), and u (4) =- (1 - cos 4) +T (1 - cos 24) 

cosh2 p 
(2) 

(1 - COS p) + u.. (cp) = a e  

which satisfies U" ($,in) = 0 in its absolute minima tanh2 p -2D 1 + 3 tanh2 p +- 
4 

e (1 - cos 2p) + 
4rnin= 0, f 2n, ... The parameter p, ranging from 0 to  8 0 . (6) 
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This effective local potential contains the tempera, 
ture dependent renormalization parameter 

coth Ft - l) (7) 
Fk 

which is the difference between the total mean square 
fluctuation of pi and the corresponding classical one, 
calculated in the Gaussian approximation. 

The effective potential (5) has been previously used 
for the SG case [7], and the results have been success- 
fully compared with Quantum Monte Carlo data for 
the specific heat, as well as with exact Bethe Ansatz 
calculations in the continuum limit. 

4. Results a n d  discussion 

We have set up a numerical procedure for evaluating 
the free energy by means of the exact Transfer Matrix 
method. 

CLASSICAL DSG. - The nonlinear specific heat per site 
6c turns out to be most sensitive to the features of 
the DSG potential, and indeed it shows an interesting 
dependence on the parameter p (Fig. 1). Note that 
the curves for p = 0 and p = ca represent the re- 
spective SGIimits. The p = m curve appears to be 
shifted because of the choice of the temperature scale: 
EK (p = m)  is twice the energy of the a-SG kink. For p 
raising from zero the peak value ~ C M  shows an interest- 
ing behaviour. Since EK (p) has its relevant variation 
for 0.5 5 p 5 2.5, we attribute to  the lowering en- 
ergy cost of creating kinks the increase of 6 c ~  in the 
same range; for 0 5 p < 0.5 the increasing size of the 
kinks gives rise to additional excluded volume, which 
lowers the kink density and hence 6cM; finally, for p de- 
creasing from oo, the a-SG kinks couple in pairs with 
decreasing distance, yielding a higher density. 

Fig. 1. - Classical nonlinear specific heat per site 6c for 
R = 5 .  

In figure 2 we report results for the magnetization 
m = (cos (pi)).  In the n-SG limit p = m, m is iden: 
tically vanishing by symmetry reasons. For finite p 
we can observe a crossover between a low-temperature 
behaviour, where no kinks are excited and the system 
fluctuates around its absolute minima, and the tem- 
perature region where kink excitations do occur and 
cause a decrease in the magnetization which is larger 
for larger p, i.e. when a larger portion of the kink 
resides about the relative minimum pi = a of U (pi).  

Fig. 2. - Magnetization m = (cos ( p i ) )  for R = 5. Contin- 
uous lines: classical. Dashed lines: quantum for Q = 0.1. 

QUANTUM DSG. - In figure 3 we report the quantum 
corrected Sc, in the cases p = 1, 2. The reduction of 
6c appears to be more relevant with respect to the SG 
case [7]. 

Fig. 3. - Quantum corrected nonlinear specific heat per site 
6c, for Q = 0.1 and R = 5. Dashed lines: corresponding 
classical result. 

In figure 2 we also report the quantum magnetiza- 
tion. Its most relevant feature is the lack of saturation 
at T = 0, which is due to the quantum vacuum fluc- 
tuations: by the definition of D(t)  we have indeed 
m (t = 0) = e-D(0)/2 
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