GOLDSTONE SINGULARITIES IN ISOTROPIC FERROMAGNETS
H.-O. Heuer

To cite this version:
H.-O. Heuer. GOLDSTONE SINGULARITIES IN ISOTROPIC FERROMAGNETS. Journal de Physique Colloques, 1988, 49 (C8), pp.C8-1561-C8-1562. <10.1051/jphyscol:19888715>. <jpa-00228953>

HAL Id: jpa-00228953
https://hal.archives-ouvertes.fr/jpa-00228953
Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
GOLDSTONE SINGULARITIES IN ISOTROPIC FERROMAGNETS

H.-O. Heuer
Institut für Theoretische Physik III, Ruhr-Universität Bochum, D-44780 Bochum, F.R.G.

Abstract. - The equation of state and the susceptibilities of isotropic magnets are calculated in exponentiated scaling form to $O(\varepsilon)$ by repetitive use of the trajectory integral method. The resulting coexistence-curve singularities do not depend on the dimension for $d \geq 3$ since the Goldstone modes show Fisher-renormalized classical tricritical behaviour.

It is well-established [1, 2] that the coexistence-curve of isotropic ferromagnets is a line of critical points where the transverse susceptibility diverges. It ends at the ordinary critical point, which is a kind of bicritical point where longitudinal and transverse fluctuations become critical. In this paper, I apply the trajectory integral method [3] to calculate the crossover between the ordinary critical behaviour and the coexistence behaviour of isotropic magnets in $O(\varepsilon)$ ($\varepsilon = 4 - d$). My starting point is the usual Ginzburg-Landau-Wilson-Hamiltonian for an n-component isotropic spin system:

$$\mathcal{H} = -\frac{1}{2} \sum_q \mathbf{S}_q \cdot \mathbf{S}_{-q} \left(r + q^2 \right) - u \sum_{q_1} \sum_{q_2} \sum_{q_3} \mathbf{S}_{q_1} \cdot \mathbf{S}_{q_2} \cdot \mathbf{S}_{q_3} \cdot \mathbf{S}_{-q_1-q_2+q_3} + \mathcal{H}_0$$

Separating longitudinal and transverse modes by a shift $\sigma_q = S_q - M \cdot \delta(q)$, one obtains the Hamiltonian

$$\tilde{\mathcal{H}}(\sigma, S_\perp) = -\frac{1}{2} \tau_1 \sigma^2 - \frac{1}{2} \tau_T |S_\perp|^2 - u_1 |S_\perp|^2 - u_2 \sigma^4 - u_3 \sigma^2 |S_\perp|^2 + \tilde{H} \sigma_0$$

with the coupling parameters $\tau_L = r + 12uM^2$, $\tau_T = r + 4uM^2$, $w_1 = w_2 = 4uM$, $u_1 = u_2 = u$, $u_3 = 2u$ and $\tilde{H} = H - rM - 4uM^3$. M is the magnetization given by the condition $\langle \sigma_0 \rangle = 0$. It is the idea of the trajectory integral method to renormalize the system into the noncritical region $\tau(\varepsilon^*) = O(1)$ and to match it with Landau theory plus fluctuation corrections. Mean field theory shows that this concept fails near the coexistence-curve: if one chooses ε^* in such a way that the longitudinal fluctuations are noncritical ($\tau_L(\varepsilon^*) = O(1)$), the transverse fluctuations are still critical ($\tau_T(\varepsilon^*) \approx 0$). These considerations led to a parquet graph summation of the susceptibilities in Nelsons work [1]. In this paper I apply the trajectory integral method throughout. The idea is to continue the renormalization of the system $\tilde{\mathcal{H}}(\varepsilon^*)$ [1, 3] until the critical Goldstone modes are noncritical at some matching point ε^*. Before, it is necessary to eliminate the noncritical longitudinal modes in the renormalized free energy

$$\tilde{F}(\varepsilon^*) = -\frac{1}{V(\varepsilon^*)} \ln \int_{\mathcal{S}_{\perp}} \exp \tilde{\mathcal{H}}(\sigma, S_\perp; \varepsilon^*)$$

by integration over σ. The Feynman-graph expansion leads to

$$\tilde{F}(\varepsilon^*) = -\frac{1}{V(\varepsilon^*)} \ln \int_{\mathcal{S}_{\perp}} e^{\tilde{\mathcal{H}}(S_\perp)} - v(\varepsilon^*) \Delta F_\sigma = \tilde{F} + \Delta F_\sigma$$

ΔF_σ is the integrated free energy of the longitudinal modes in $\tilde{\mathcal{H}}(\sigma, S_\perp; \varepsilon^*)$. Since these modes are noncritical, ΔF_σ can be calculated by Landau theory plus leading fluctuation corrections:

$$\Delta F_\sigma = -\frac{\tilde{H}^2(\varepsilon^*)}{2\tau_L(\varepsilon^*)} + \frac{1}{2} \int_p G_L^{-1}(\varepsilon^*) +$$

$$+ 3 \frac{u_2(\varepsilon^*)}{r_L(\varepsilon^*)} \int_p G_L(\varepsilon^*) + O\left(u_2(\varepsilon^*), u_2^2(\varepsilon^*) \right).$$

The effective Hamiltonian

$$\tilde{\mathcal{H}}(S_\perp) = -\frac{1}{2} \tilde{\tau} |S_\perp|^2 - \tilde{u} |S_\perp|^4$$

in (4) describes the critical Goldstone modes coupled to the noncritical longitudinal modes. The coupling parameters $\tilde{\tau}$ and \tilde{u} are calculated to $O(u_1(\varepsilon^*), u_1^2(\varepsilon^*))$ as

$$\tilde{\tau} = r_T(\varepsilon^*) + 2 \frac{u_1(\varepsilon^*)}{r_L(\varepsilon^*)} \tilde{H}(\varepsilon^*) + 2u_3(\varepsilon^*) \int_p G_L(p) -$$

$$-6 \frac{w_1(\varepsilon^*)}{r_L(\varepsilon^*)} \int_p G_L(p)$$

and

$$\tilde{u} = u_1(\varepsilon^*) - \frac{w_1^2(\varepsilon^*)}{2} \int_p G_L(q_1 + q_2 + p).$$

G_L in (5, 7, 8) is the longitudinal propagator at ε^*: $G_L = (r_L(\varepsilon^*) + p^2)^{-1}$. Before I work out the new coupling parameters $\tilde{\tau}$ and \tilde{u} in terms of the original pa-
rameters of H it is necessary first to calculate the susceptibilities and the equation of state from the condition $\langle \sigma_0 \rangle = 0$. The usual Feynman graph expansion would lead to logarithmic terms in \hat{t}. A better way is to make use of (2) which shows that H is the source term for σ:

$$\begin{align*}
H(\ell^*) - \tau(\ell^*) M(\ell^*) - 4u(\ell^*) M^3(\ell^*) &= 12u(\ell^*) \\
M(\ell^*) \int_q G_q(\tau_q) &= 12u(\ell^*) M(\ell^*) E(\hat{t}, \hat{u})
\end{align*}$$

(9)

where

$$\hat{E} := \frac{\partial E}{\partial \hat{t}} = \frac{1}{2} \int_q \langle S \cdot q \cdot S \cdot \overrightarrow{q} \rangle = \frac{\partial E}{\partial \hat{t}}$$

(10)

is the energy of the $(n - 1)$-dimensional Goldstone system which has been calculated in exponentiated scaling form [4, 5]. It is sensible to introduce the abbreviations

$$\begin{align*}
T_L(\ell^*) := t(\ell^*) + 12u(\ell^*) M^2(\ell^*) &= r_L(\ell^*) + O(\ell^*) \\
T_T(\ell^*) := t(\ell^*) + 4u(\ell^*) M^2(\ell^*) &= r_T(\ell^*) + O(\ell^*)
\end{align*}$$

(11)

where $t(\ell^*) = \tau(\ell^*) + A/2u(\ell^*)$ is the renormalized temperature scaling field [3]. $T_L(\ell^*) \simeq \mid - 2t(\ell^*) \mid$ is the renormalized temperature distance, whereas $T_T(\ell^*)$ is the renormalized distance from the coexistence-curve. Choosing $T_L(\ell^*) = 1$ as the matching condition, the effective temperature $\hat{t} := \hat{t} + \hat{A}/2\hat{u}$ of the Goldstone system follows from (7) as

$$\hat{t} = T_T(\ell^*) + (1 - T_T(\ell^*)) \cdot 8u(\ell^*) E(\hat{t}, \hat{u}) .$$

(12)

The effective interaction $\hat{u}(8)$ is momentum independent in $O(\varepsilon)$, given by

$$\hat{u} = u(\ell^*) \cdot \frac{T_T(\ell^*)}{T_L(\ell^*)} .$$

(13)

The equation of state (9) and the susceptibilities which follow from (9) depend on the effective temperature \hat{t} (12) and \hat{u} (13) via the energy $E(\hat{t}, \hat{u})$. \hat{t} and \hat{u} itself depend on the equation of state via $T_T(\ell^*)$. Thus, the magnetic properties for the whole $M - T$ - phase diagram result from the coupled equations (9, 12, 13) [6].

In this paper I present the results for the coexistence-curve only setting the \hat{A}^d-coupling to its critical value $u = u^c$. The behaviour at the coexistence-curve is obtained from the general results (9, 12, 13) in the limit $T_T(\ell^*) \ll 1$. Inserting the energy of the Goldstone system [5, 6]

$$\hat{E}(\hat{t}, \hat{u}) = \frac{(n - 1) K_4}{4\alpha_t} \hat{t} - \frac{(n - 1) K_4}{4\alpha_t} \hat{t}^{1 - \alpha_t} F_0(\hat{u})$$

(14)

in tricritical scaling fields into (12), leads to

$$T_T(\ell^*) \simeq \frac{9}{n + 8} \hat{t}^2 + \frac{n - 1}{n + 8} \hat{t}^{2 - \alpha_t} F_0(\hat{u}) .$$

(15)

This equation explicitly shows that the critical distance $T_T(\ell^*)$ is related to the temperature \hat{t} of the Goldstone system by a Fisher-renormalization [7] since the nonanalytic term $\hat{t}^{2 - \alpha_t}$ with $\alpha_t = \alpha_t/2$ dominates near the coexistence-curve. The physical reason for this Fisher-renormalization is the coupling of the critically fluctuating transverse modes to the longitudinal modes in the Goldstone regime. The equation of state and the transverse susceptibility near the coexistence-curve follow from (9) and (15) as

$$\begin{align*}
\frac{h}{m^{\alpha_t}} &= L^{-2} \hat{t} \\
\frac{x_T}{m^{1 - \alpha_t}} &= L^2 \hat{t}^{-1}
\end{align*}$$

(16, 17)

The longitudinal susceptibility is evaluated in the same way observing that the term E/\hat{t} dominates:

$$\frac{x_L}{m^{1 - \alpha_t}} \sim \left[\frac{9}{n + 8} + \frac{n - 1}{n + 8} \hat{t}^{2 - \alpha_t} F_0(\hat{u}) \right] .$$

(18)

Note that the equation of state and the transverse susceptibility near the coexistence-curve have the very simple structure of a system with temperature \hat{t} and vanishing interaction \hat{u}. This point is verified from (13), which leads to

$$\hat{u} \sim \left[\frac{h}{m^{\alpha_t}} \right]^{1 - \alpha_t} .$$

(19)

Working out the matching condition $T_L(\ell^*) = 1$ and $T_T(\ell^*)$ in (15), one obtains the equation of state near the coexistence-curve

$$\frac{h}{m^{\alpha_t}} = \left[\frac{1}{m^{1/\alpha_t}} + 1 \right]^{1 - \alpha_t} .$$

(20)

using the usual normalization conditions $f(-1) = 0$ and $f(0) = 1$. The longitudinal susceptibility is given by

$$\frac{x_L}{m^{1 - \alpha_t}} \sim \left(\frac{h}{m^{\alpha_t}} \right)^{1 - \alpha_t}$$

(21)

ear the coexistence-curve. Note that the results (20, 21) for the functional form of the equation of state and the susceptibilities near the coexistence-curve are exact for $d \geq 3$ since the specific heat exponent $\alpha_t = \frac{1}{2}$ is classical tricritical for $d \geq 3$.