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DYNAMICS OF UNBOUND VORTICES IN THE 2-DIMENSIONAL XYAND 
ANISOTROPIC HEISENBERG MODELS 

F. G. Mertens l ,  A. R. Bishop, M. E. Gouvea and G. M. Wysin 

Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A. 

Abstract. - Assuming an ideal gas of vortices above the Kosterlitz-Thouless transition temperature, the dynamic form 
factors are calculated. For the in-plane correlations a Lorentzian central peak is predicted which is independent of the 
vortex size and shape. However, for the out-of-plane correlations the velocity dependence of the vortex structure is decisive 
for the occurrence of a Gaussian central peak. Both results are in good agreement with combined Monte Carlo-molecular 
dynamics simulations. 

1. Introduction 

Quasi-two-dimensional magnetic materials 
with easy-plane symmetry, e.g. RbzCrCl4 or 
BaCoz (AsOs), , have been studied recently both by 
inelastic neutron scattering experiments 11, 2, 87 and 
by a phenomenological theory for the dynamic corre- 
lations [3]. In this theory the anisotropic Heisenberg 
model with nearest-neighbor interactions 

is considered, where Sm is a classical spin vector and 
0 5 X < 1; X = 0 corresponds to the XY-model. 

At a critical temperature T, (A) Monte Carlo (MC) 
data [5] show a Kosterlitz-Thouless phase transition. 
Above T, a part of the vortex-antivortex pairs unbind 
and the unbound vortices are in motion due to their in- 
teractions. Assuming that the positions are random lo- 
cally, the velocity distribution is Gaussian [4], therefore 
the unbopd vortices can be treated phenomenologi- 
cally as an ideal gas, in the same spirit as the soliton- 
gas approach for 1-d magnets. 

The correlations for the in-plane components S, or 
Sy are quite distinct from those for the out-of-plane 
component S,. We show here that the velocity depen- 
dence of the vortex structure is decisive for the out- 
of-plane correlations, in contrast to reference [3] where 
only the static structure has been considered. 

S, and Sy are not localized, i.e. they have no spatial 
Fourier transform. Therefore the in-plane correlation 
function Sx, (r, t) = (S, (r, t) S, (0,O)) is only globally 
sensitive to the presence of vortices. Thus the char- 
acteristic length is the average vortex-vortex separa- 
tion 2 c, where is the Kosterlitz-Thouless correlation 
length. 

When a planar vortex starts moving it develops an 
out-of-plane structure (see next section). However, 
for S,, (r, t) this is not important because the dom- 
inant effect of moving vortices is to act like "2-d sign 
functions" or "2-d kinks" , i.e; every vortex that passes 
with its center between 0 and r in time t diminishes the 
correlations, changing cos 4 by a factor of (-I), inde- 
pendent of the direction of movement and independent 
of the internal structure of the vortex [3]. 

The detailed calculation of S,, (r, t )  is published 
elsewhere 141 and gives a (squared) Lorentzian central 
peak for the dynamic form factor 

with y = 6% / (2E). Here is the rms velocity of the 
vortices which can be taken from Huber [7] who calcu- 
lated the velocity auto-correlation function. The cen- 
tral peak (2.2) is in excellent agreement with data ob- 
tained from combined MC-MD simulations [4]. More- 
over there is a qualitative agreement with the above 
mentioned neutron scattering experiments 1, 23. 

We use a continuum description and spherical coor- 3. Out-of-plane correlations 

dinates for the spin configuration 
S, (r, t) is localized for a single vortex, therefore cor- 

(r, t, = (cOs 4 sin e, sin 4 sin e, e) (2.1) relations are sensitive to the vortex size and structure. 

where = (z, y). T - , ~  equations of motion have We assume a dilute gas of N, unbound vortices with 

Static vortex or antivortex solutions [6] 4(,,) = positions I% and velocities ui and consider the inco- 

f tan-' (ylz) . Molecular dynamics (MD) simulations herent 

have shown [6] that for 0 5 X 5 0.7 only a planar NV 
solution 6 (r) = a / 2 is stable, whereas for X & 0.8 ~ , ( r , t ) = ~ ~ c o s ~ ( r - I % - u i t ) .  (3.1) 
only a solution which has an out-of-plane structure 

i=l 
6 (r) # T / 2 is stable; only the former case is consid- 
ered here. The thermal average in S,, (r, t) = (S, (r, t) S, (O,0)) 
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is evaluated by integration over R and u 

n V s 2  1 / d 2 m a u P  (u) cos B ( r  - R - ut) x 

where n, is the vortex density and P ( u )  is the ve- 
locity distribution. Introducing the vortex form factor 
f (q) = Fourier transform of cos % (r) , we get 

S2 
s z z  (q, t) = m n v  

x P (u) e-jqeut. (3.3) 

This can be evaluated easily if the static vortex solu- 
tions are inserted [3]. However, for X 0.7 only the 
planar solution turns out to be stable [6] and S,, would 
then vanish, in contradiction to the MC-MD simula- 
tion [3]. 

Therefore the velocity dependence of 0 (r) must be 
taken into account. For X 5 0.7 and small velocity u 
the equations of motion yield the asymptotic solution 
(in the moving frame, with time unit h l JS)  

-1 u.e, - 
cos % = -- , r  + co 

46 r 

which has been checked by MD-simulations; S = 1 -A, 
and e, is the azimuthal unit vector in the xy-plane. 
The solution for r -t 0 can be obtained also, but we 
are interested here only in the correlations for small q 
where the asymptotic solution should be a good ap- 
proximation. This leads to a velocity dependent form 
factor and eventually to  

This is a Gaussian central peak which reflects the ve- 
locity distribution. The width I', = aq has a linear 
q-dependence, which is very well supported by the MC- 
MD data [3]. The integrated intensity is 

Here the divergence for q -+ 0 results from the infi- 
nite range of the structure (3.4). However, the actual 
radius of a vortex must be on the order of < (see intro- 
duction), which can be taken into account e.g. by an 
ad-hoc cut-off function exp ( - ~ r  1 J) with a free pa- 
rameter E. This gives an extra factor of re2 in (3.6), 
withre= 1-11 W a n d  W =  [ l + ( < q / ~ ) ~ ] ~ ' ~ .    he 
final result for I, (q) is consistent with our MC-MD 
data for small q (Fig. 1). Note that absolute intensi- 
ties are compared here; we have chosen E such that I, 
is smaller than the data because other effects can also 
contribute to the central peak, e.g. 2-magnon differ- 
ence processes and vortex-magnon interactions which 
will be treated in future publications. 
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Fig. 1. - Intensity L of central peak for a temperature 
T > T, 1: 0.8. Data points result from M G M D  simulations 
on a 50x50 lattice (circles) and 100 x 100 lattice (crosses). 
Solid line from (3.6) including the cut-ofl;, with E and from 
reference [4]. 
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