THE EFFECT OF LOCAL LASER ANNEALING ON
THE MAGNETIC PROPERTIES OF AMORPHOUS
RIBBONS

P. Sánchez, M. Sánchez, E. López, M. García, C. Aroca

To cite this version:

P. Sánchez, M. Sánchez, E. López, M. García, C. Aroca. THE EFFECT OF LOCAL LASER ANNEALING ON THE MAGNETIC PROPERTIES OF AMORPHOUS RIBBONS. Journal de Physique Colloques, 1988, 49 (C8), pp.C8-1325-C8-1326. <10.1051/jphyscol:19888605>. <jpa-00228829>

HAL Id: jpa-00228829
https://hal.archives-ouvertes.fr/jpa-00228829
Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THE EFFECT OF LOCAL LASER ANNEALING ON THE MAGNETIC PROPERTIES OF AMORPHOUS RIBBONS

P. Sánchez, M. C. Sánchez 1, E. López 1, M. García 2 and C. Aroca 1

Dto Física. ETSI Telecomunicación. Univ. Politécnica. Madrid, Spain

Abstract. - Ferromagnetic amorphous ribbons has been locally laser annealed, with different geometrical arrays of annealed zones being the density of irradiated areas constant (100 spots of 10 μm of diameter by square centimeter). It has been studied the influence of these heat treatments in the induced anisotropy and magnetic losses.

The magnetic behavior of amorphous ferromagnetic ribbons, locally laser annealed to induce geometrical arrays of irradiated zones [1], has been studied. The diameter of these zones was 10 μm. The laser power was high enough to crystallize the irradiated areas [2]. Different arrays were induced, with different symmetries (4-fold: distance between laser impacts 1 mm x 1 mm, and 2-fold: distance 0.5 mm x 2 mm).

The measures were performed in two high magnetostriction samples (2605 SC, 2605 S2) and in a low magnetostriction one (2705 M). Disk shape samples of 2 cm of diameter, cut by electrical abrasion, were used in the anisotropy and magnetization measurement. Ring like samples (0.7 cm inner diameter, 2 cm outer diameter) were cut to measure the magnetic losses.

Hysteresis loops and curves of maxima magnetization versus applied field direction at different applied field, were obtained with an original sampling and hold system [3].

Table I shows the magnetization work to magnetize the sample parallel and perpendicular to the rolling direction, in as-cast samples and after different laser annealing. After any local laser annealing the magnetization work in all the samples increase.

<table>
<thead>
<tr>
<th>Sample</th>
<th>2-fold symmetry</th>
<th>4-fold symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>2705 M</td>
<td>parallel 58 J/m²</td>
<td>397 J/m²</td>
</tr>
<tr>
<td></td>
<td>(λs = 0)</td>
<td>313 J/m²</td>
</tr>
<tr>
<td>2605 SC</td>
<td>parallel 346 J/m³</td>
<td>3 245 J/m³</td>
</tr>
<tr>
<td></td>
<td>(λs = 30 x 10⁻⁶)</td>
<td>5 758 J/m³</td>
</tr>
<tr>
<td></td>
<td>perpend. 490 J/m³</td>
<td>2 734 J/m³</td>
</tr>
<tr>
<td>2605 S2</td>
<td>parallel 283 J/m³</td>
<td>3 295 J/m³</td>
</tr>
<tr>
<td></td>
<td>(λs = 27 x 10⁻⁶)</td>
<td>2 107 J/m³</td>
</tr>
<tr>
<td></td>
<td>perpend. 283 J/m³</td>
<td>5 850 J/m³</td>
</tr>
</tbody>
</table>

The as-cast 2705 M exhibit a low in-plane anisotropy along the rolling direction, whereas the other as-cast samples display anisotropy perpendicular to the sample surface, but 2605 SC besides shows an in-plane anisotropy in the rolling direction.

Figure 1 shows magnetization curves for samples with high and low magnetostriction. We can see that:

a) the anisotropy energy induced by the annealing is greater in the high λs samples than in the low λs one;

b) in the high λs samples, the induced easy axis is perpendicular to the rows of laser impacts separated 0.5 mm. In the low λs one, the induced easy axis is parallel to the above mentioned rows. However it is very difficult to saturate the sample, and an intersection between both magnetization curves appears, having similar magnetization work (Tab. 1);

Fig. 1. – Magnetization curves (parallel and perpendicular to the rolling direction) of 2705 M and 2605 SC: as-cast, 2-fold and 4-fold symmetry annealing.
c) in the low \(\lambda_a \) samples, the initial susceptibility is practically not affected by the annealing, but it is widely reduced in the high \(\lambda_a \) ones.

The different behavior of both kinds of samples can be due to the internal stresses induced in the sample by the volume change, during the crystallization, of the irradiated areas. The internal stresses induce more anisotropy in the high \(\lambda_a \) samples than in the other.

Figure 2a shows, for the as-cast samples, the curves of maxima magnetization versus the angle between the rolling direction and the applied field, \(H \), at constant amplitude of \(H, (M, \phi)_H \). The amplitude of these curves correspond to the maxima distance between the curves of magnetization parallel and perpendicular to the easy axis (distance \(i, j \) Fig. 1). These curves are, in some way, similar to the anisotropy torque curves. 2705 M and 2605 SC show an in-plane easy axis and the 2605 S2 has not any in-plane easy axis.

\[
\begin{array}{c}
\text{2705 M} \\
\text{2605 SM} \\
\text{as-cast} \\
\text{2605 S2} \\
\text{2705 M} \\
\text{2605 SM} \\
\text{2605 S2} \\
\text{2705 M} \\
\text{2605 SM} \\
\text{2605 S2} \\
\end{array}
\]

Fig. 2. - \((M, \phi)_H \) curves for the three samples. a) as-cast. b) 2-fold symmetry; c) 4-fold symmetry.

Figure 2b shows the \((M, \phi)_H \) curves for the 2-fold symmetry annealed samples. It can be observed an in-plane easy axis in all of them.

Figure 2c shows the \((M, \phi)_H \) curves for the 4-fold symmetry annealed samples, in the 2705 M, low \(\lambda_a \), it appears a biaxial anisotropy. In the 2605 SC the in-plane anisotropy is reduced, and the 2605 S2 is still isotropic. Then in the low \(\lambda_a \) sample it is possible to induce a biaxial anisotropy (lightly modified by the initial uniaxial anisotropy of the as-cast sample), whereas conventional annealing are unable to produce this result. Others kinds of irradiation treatment like irradiation by high energy heavy ions neither induce this effect, perhaps due to the at random distribution of damaged regions [4].

The origin of induced anisotropy by local laser annealing can be due to:

a) the internal stress field produced by the change of volume of the irradiated zones;

b) the magnetostatic energy due to the different permeability of the crystallized zones and the rest of the sample.

In 2705 M, because its low \(\lambda_a \), the anisotropy must be mainly due to the magnetostatic energy capable of inducing biaxial anisotropy. In the other two samples, the anisotropy is mainly due to internal stresses, and the magnetic hardening produced by them masks completely the other effect.

Magnetic losses were evaluated by measuring, in a single above mentioned ring, the first harmonic of the \(dB/dt \) and its phase respect to \(H \) with a two phases lock-in amplifier. In figure 3, it can be seen as the losses increase in the annealed samples due to the magnetic hardening, but the slope is not dependent on the heat treatments.

\[
\begin{array}{c}
\text{2705 M} \\
\text{2605 SM} \\
\text{2605 S2} \\
\text{2705 M} \\
\text{2605 SM} \\
\text{2605 S2} \\
\end{array}
\]

Fig. 3. - Losses vs. frequency for an induction of 0.57 T (2705 M).

Acknowledgments

This work was partially supported by the CAICYT of the Departament of Education of Spain (num 2863-83).

