THE EFFECT OF LOCAL LASER ANNEALING ON THE MAGNETIC PROPERTIES OF AMORPHOUS RIBBONS

P. Sánchez, M. Sánchez, E. López, M. García, C. Aroca

To cite this version:

P. Sánchez, M. Sánchez, E. López, M. García, C. Aroca. THE EFFECT OF LOCAL LASER ANNEALING ON THE MAGNETIC PROPERTIES OF AMORPHOUS RIBBONS. Journal de Physique Colloques, 1988, 49 (C8), pp.C8-1325-C8-1326. <10.1051/jphyscol:19888605>. <jpa-00228829>

HAL Id: jpa-00228829
https://hal.archives-ouvertes.fr/jpa-00228829
Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THE EFFECT OF LOCAL LASER ANNEALING ON THE MAGNETIC PROPERTIES OF AMORPHOUS RIBBONS

P. Sánchez, M. C. Sánchez, E. López, M. García and C. Aroca

Abstract. - Ferromagnetic amorphous ribbons has been locally laser annealed, with different geometrical arrays of annealed zones being the density of irradiated areas constant (100 spots of 10 \(\mu\)m of diameter by square centimeter). It has been studied the influence of these heat treatments in the induced anisotropy and magnetic losses.

The magnetic behavior of amorphous ferromagnetic ribbons, locally laser annealed to induce geometrical arrays of irradiated zones [1], has been studied. The diameter of these zones was 10 \(\mu\)m. The laser power was high enough to crystallize the irradiated areas [2]. Different arrays were induced, with different symmetries (4-fold: distance between laser impacts 1 mm \(\times\) 1 mm, and 2-fold: distance 0.5 mm \(\times\) 2 mm).

The measures were performed in two high magnetostriction samples (2605 SC, 2605 S2) and in a low magnetostriction one (2705 M). Disk shape samples of 2 cm of diameter, cut by electrical abrasion, were used in the anisotropy and magnetization measurement. Ring like samples (0.7 cm inner diameter, 2 cm outer diameter) were cut to measure the magnetic losses.

Hysteresis loops and curves of maxima magnetization versus applied field direction at different applied field, were obtained with an original sampling and hold system [3].

Figure 1 shows magnetization curves for samples with high and low magnetostriction. We can see that:

a) the anisotropy energy induced by the annealing is greater in the high \(\lambda_s\) samples than in the low \(\lambda_s\) one;

b) in the high \(\lambda_s\) samples, the induced easy axis is perpendicular to the rows of laser impacts separated 0.5 mm. In the low \(\lambda_s\) one, the induced easy axis is parallel to the above mentioned rows. However it is very difficult to saturate the sample, and an intersection between both magnetization curves appears, having similar magnetization work (Tab. I);

![Figure 1](image-url)
c) in the low λ_4 samples, the initial susceptibility is practically not affected by the annealing, but it is widely reduced in the high λ_4 ones.

The different behavior of both kinds of samples can be due to the internal stresses induced in the sample by the volume change, during the crystallization, of the irradiated areas. The internal stresses induce more anisotropy in the high λ_4 samples than in the other.

Figure 2a shows, for the as-cast samples, the curves of maxima magnetization versus the angle between the rolling direction and the applied field, H, at constant amplitude of H, $(M, \phi)_H$. The amplitude of these curves correspond to the maxima distance between the curves of magnetization parallel and perpendicular to the easy axis (distance i, j Fig. 1). These curves are, in some way, similar to the anisotropy torque curves. 2705 M and 2605 SC show an in-plane easy axis and the 2605 S2 has not any in-plane easy axis.

The origin of induced anisotropy by local laser annealing can be due to:

a) the internal stress field produced by the change of volume of the irradiated zones;

b) the magnetostatic energy due to the different permeability of the crystallized zones and the rest of the sample.

In 2705 M, because its low λ_4, the anisotropy must be mainly due to the magnetostatic energy capable of inducing biaxial anisotropy. In the other two samples, the anisotropy is mainly due to internal stresses, and the magnetic hardening produced by them masks completely the other effect.

Magnetic losses were evaluated by measuring, in a single above mentioned ring, the first harmonic of the dB/dt and its phase respect to H with a two phases lock-in amplifier. In figure 3, it can be seen as the losses increase in the annealed samples due to the magnetic hardening, but the slope is not dependent on the heat treatments.

![Figure 2. - $(M, \phi)_H$ curves for the three samples. a) as-cast, b) 2-fold symmetry; c) 4-fold symmetry.](image_url)

![Figure 3. - Losses vs. frequency for an induction of 0.57 T (2705 M).](image_url)

Acknowledgments

This work was partially supported by the CAICYT of the Departament of Education of Spain (num 2863-83).

