SUSCEPTIBILITIES, CORRELATION FUNCTIONS
AND NEUTRON SCATTERING LAW IN
AMORPHOUS MAGNETS

K. Fischer

To cite this version:

K. Fischer. SUSCEPTIBILITIES, CORRELATION FUNCTIONS AND NEUTRON SCATTERING LAW IN AMORPHOUS MAGNETS. Journal de Physique Colloques, 1988, 49 (C8), pp.C8-1293-C8-1294. <10.1051/jphyscol:19888589>. <jpa-00228810>

HAL Id: jpa-00228810
https://hal.archives-ouvertes.fr/jpa-00228810
Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SUSCEPTIBILITIES, CORRELATION FUNCTIONS AND NEUTRON SCATTERING LAW IN AMORPHOUS MAGNETS

K. H. Fischer

IFF der Kernforschungsanlage Jülich, Postfach 1913, D-5170 Jülich, F.R.G.

Abstract. - We calculated the static and dynamic susceptibilities $\chi (Q)$ and $\chi (Q, \omega)$, the neutron scattering cross-section $S(Q)$, and the scattering law $S(Q, \omega)$ for amorphous magnets with small random anisotropy. These results agree fairly well with those of a recent neutron-spin echo experiment on amorphous TbNi$_2$.

Amorphous magnets with random anisotropy commonly are described by the random anisotropy model (RAM) with the Hamiltonian

$$H = -\frac{1}{2} \sum_{ij} J_{ij} S_i S_j - \frac{D}{2} \sum_i (n_i S_i)^2 - h \sum_i S_i, \quad (1)$$

with non-random ferromagnetic exchange interactions $J_{ij} = J_{i-j}$ and an external field h in units of μ_B. The anisotropy of strength D is described by randomly distributed unit vectors n_i. In three dimensions, this model most likely has a phase transition at a characteristic temperature T_c. Below T_c, the system goes into a state without long-range ferromagnetic order which is similar to a spin glass state. Estimates based on the formation of magnetic domains [1] and a site-dependent mean-field-theory (MFT) [2] indicate below T_c ferromagnetic spin correlations of the order $\xi = (J_0 / D)^2$ where J_0 is the exchange between nearest neighbours. Linear response theory connects the spin correlation function $\langle S_{i\alpha} S_{j\alpha} \rangle_D$ with the susceptibility $\chi_{i\alpha,\alpha} (\alpha = x, y, z)$. One has

$$T \chi_{i\alpha,\alpha} = \langle \{ S_{i\alpha} S_{j\alpha} \rangle_D - \langle M_{i\alpha} M_{j\alpha} \rangle_D, M_{i\alpha} \equiv \langle S_{i\alpha} \rangle, \quad (2)$$

where $\langle \rangle$ denotes the thermal average and $\langle \rangle_D$ the average over a distribution of random axes. The second term on the r.h.s. of (2) is characteristic for random systems. After Fourier transformation, equation (2) leads to the neutron scattering form factor

$$S_\alpha (Q) = T \chi_\alpha (Q) + q_\alpha (Q), \quad (3)$$

where $q_\alpha (Q)$ is the Fourier transform of the magnetization correlation function $\langle M_{i\alpha} M_{j\alpha} \rangle_D$. In zero field, the system is macroscopically isotropic and $S_\alpha (Q)$ independent of the direction α. For arbitrary fields, weak anisotropy and $Q \to 0$, one derives [3]

$$S_\alpha (Q) = \frac{T}{A (Q^2 + \xi_\alpha^2)} + 4 \pi \xi_\alpha D^2 (a - q_\alpha) + M_{i\alpha}^2 \delta (Q). \quad (4)$$

The Lorentzian-squared term in (4) is due to the disorder and vanishes for $T > T_c$ and $h = 0$ with $q \equiv \Sigma q_\alpha \equiv \Sigma_\alpha [M_{i\alpha}^2]_D = 0$. It remains finite either for $T < T_c$ and $h = 0$ with $q_\alpha = q / 3$ or for $T > T_c$, $h \neq 0$ with $q_1 = M^2$ and $q_2 = q_3 = 0$ (and, of course, for $h \neq 0, T < T_c$). This term has been derived already in [2]. For weak anisotropy, the correlation length ξ_α can be approximated by $\xi_\alpha^{-2} = \xi_{FM,\alpha}^{-2} + \xi_D^{-2}$ where $\xi_{FM,\alpha}$ is the correlation length of the ideal ferromagnet (which diverges in zero field below T_c), and where $\xi_\alpha \propto (J_0 / D)^2$. This superposition of a Lorentzian and a Lorentzian-squared term has been observed in the form factors of Tb$_{75}$Fe$_{25}$, TbFe$_2$, NdFe$_2$, and other amorphous magnets [4].

The dynamics of the RAM are determined by the Hamiltonian (1) and by the symmetry of its low temperature states. The exchange interactions are rotation invariant, but the random anisotropy breaks this symmetry locally. The breaking of the local rotation invariance is also characteristic for spin glasses, but in this case it is a property of the low temperature states and not of the Hamiltonian. As a consequence, the dynamics of both systems turns out to be rather different above their characteristic temperatures. In addition, one has in the RAM below T_c considerable short-range order which is missing in most spin glasses. Hence, one expects the dynamics of the RAM below T_c and for not too small Q-values to be dominated by ferromagnetic modes with two modification. (i) Due to the disorder and also due to the Korringa relaxation, the modes are overdamped and hence diffusive. For spin glasses, this problem has been carefully investigated [5]; (ii) due to the anisotropy, the total spin is no longer conserved.

We describe the system by the Langevin equation

$$\frac{\partial S_\alpha (Q, t)}{\partial t} = -\gamma (Q) \frac{\delta H}{\delta S_\alpha (Q)} + \zeta_\alpha (Q, t), \quad (5)$$

with $\gamma = \text{const}$ for $Q \to 0$ and with the Gaussian noise $\zeta (Q, t)$ with

$$\langle \zeta_\alpha (Q, t) \zeta_\beta (Q', t') \rangle = 2 \gamma (Q) T \delta (t - t') \delta_{\alpha\beta} \delta (Q + Q'). \quad (6)$$

The Hamiltonian (1) in the continuum limit can be written as

\[J_{ij} S_i S_j - \frac{D}{2} \sum_i (n_i S_i)^2 - h \sum_i S_i, \]
In MFT and for $h \to 0$, one has from (5) and (7) the dynamic susceptibility
\[\chi_\alpha (Q, \omega) = \frac{1}{\gamma (Q)} \left[T + A Q^2 - i \omega \right]^{-1} \] (8)
with $T = \chi = 0.6$; for $T < T_c$ and $r = r_0 + \lambda = A \left(\xi_{PM}^2 + \xi_D^2 \right)$ for $T > T_c$. For $\omega = 0$, equation (8) reduces to the static susceptibility $\chi(Q)$ from (3) and (4). The Lorentzian-squared term in (4) is a purely static effect and does not enter into dynamic properties. By means of the fluctuation-dissipation theorem, the result (8) leads to
\[\langle S_\alpha (Q, t) S_\alpha (Q, 0) \rangle D = T \left(r + A Q^2 \right)^{-1} \times \exp \left[-\gamma (Q) \left(r + A Q^2 \right) t \right] + q (Q), \] (9)
or to exponential decay of the spin correlations with the relaxation rate
\[\Gamma (Q) = \gamma (Q) \left(r + A Q^2 \right) \equiv \Gamma_0 + \Gamma_1 Q^2, \] (10)
for not too large Q-values.

The results of a recently performed neutron spin-echo experiment on an amorphous TbNi$_2$ sample [6] are in qualitative agreement with these predictions. The “intermediate” scattering function $I_\alpha (Q, t) \sim \langle S_\alpha (Q, t) S_\alpha (Q, 0) \rangle D$ was investigated in the time window $0.05 \times 10^{-9} \text{ sec} \leq t \leq 2 \times 10^{-9} \text{ sec}$ and for the momentum transfer $0.04 \text{ Å}^{-1} \leq Q \leq 0.10 \text{ Å}^{-1}$. Apart from the shortest times, one observes fairly exponential decay and the relaxation rate (10) with $\Gamma_0 \approx 3.5 \times 10^7 \text{ sec}^{-1}$ and $\Gamma_1 \approx 1.5 \times 10^{12} \text{ Å}^2 \text{ sec}^{-1}$. This result differs considerably from the neutron spin echo data for the spin glasses CuMn, LaErAl$_2$ and EuSrS which indicate a broad spectrum of relaxation times with little Q-dependence. An exception is the reentrant spin glass Eu$_{0.54}$Sr$_{0.46}$S at temperatures slightly above the transition from the paramagnetic to the ferromagnetic state [7] where one observes the exponential decay (9) and (10) with $\Gamma_0 = 0$.

From the neutron spin echo data of a TbNi$_2$, one can also extract the temperature dependence of the static spin correlation length ξ_α. One observes a strong increase of $\xi_\alpha (T)$ near $T_c = 18 K$, where T_c is in good agreement with the freezing temperature derived from the low-field magnetization data on the same sample. This temperature dependence can be attributed to the contribution from ξ_{PM} to ξ_α. At low temperatures, $\xi_\alpha (T)$ becomes approximately constant. Details about the neutron spin-echo experiment on a TbNi$_2$ will be published elsewhere.