PRESSURE EFFECT ON CURIE TEMPERATURE FOR Co1-xBx AMORPHOUS ALLOYS

H. Tange, Y. Tanaka, T. Kamimori, M. Goto

To cite this version:
H. Tange, Y. Tanaka, T. Kamimori, M. Goto. PRESSURE EFFECT ON CURIE TEMPERATURE FOR Co1-xBx AMORPHOUS ALLOYS. Journal de Physique Colloques, 1988, 49 (C8), pp.C8-1283-C8-1284. <10.1051/jphyscol:19888584>. <jpa-00228799>

HAL Id: jpa-00228799
https://hal.archives-ouvertes.fr/jpa-00228799
Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PRESSURE EFFECT ON CURIE TEMPERATURE FOR $\text{Co}_{1-x}\text{B}_x$ AMORPHOUS ALLOYS

H. Tange, Y. Tanaka, T. Kamimori and M. Goto
Faculty of Science, Ehime University, Matsuyama 790, Japan

Abstract. – Pressure effect on Curie temperature, dT_c/dp, for amorphous $\text{Co}_{1-x}\text{B}_x$ alloys is estimated indirectly from forced volume magnetostriction even in $T_c > T_{\text{cry}}$. Results estimated indirectly show smaller values compared with those measured directly, and are consistent with thermal expansion. The value of dT_c/dp extrapolated to Co agrees with that for crystalline Co.

1. Introduction

Pressure effect on Curie temperature T_c, dT_c/dp, for Co base amorphous (CoTm)$_{90}$Zr$_{10}$ (Tm = Cr, Mo) alloys has been investigated directly [1] and indirectly from forced volume magnetostriction $d\omega/dH$ [2]. However, the results show the large difference between direct and indirect measurements in Co-rich region. Invar character will be expected from the larger dT_c/dp measured directly, but there is no indication that Invar character appears from the smaller dT_c/dp estimated indirectly and the results of thermal expansion [1]. In this paper, therefore, dT_c/dp for more simple $\text{Co}_{1-x}\text{B}_x$ amorphous alloys is estimated indirectly from $d\omega/dH$ using the Kornetzki-Kouvel’s relation [3] even in $T_c > T_{\text{cry}}$, crystallization temperature, and is compared with that measured directly [1] to clarify the behavior of dT_c/dp for Co base amorphous alloys. In fact, amorphous $\text{Co}_{1-x}\text{B}_x$ alloys have higher T_c than T_{cry} in the composition region of $x < 0.28$ of B [4, 5] where dT_c/dp cannot be measured directly.

2. Experiments

Specimens prepared by the single-roller quenching technique were amorphous $\text{Co}_{1-x}\text{B}_x$ ($0.16 \leq x \leq 0.34$) and in the form of ribbons 1-2 mm wide. Ribbons 22 mm long were used as samples. Measurements of $d\omega/dH$ were done by the three-terminal capacitance method [6] in fields up to 18 kOe and at temperatures from 4.2 K to T_c or T_{cry}.

3. Results and discussion

In figure 1, magnetic moment per Co atom n, T_c and T_{cry} for amorphous $\text{Co}_{1-x}\text{B}_x$ alloys are shown as a function of B content x, together with the results published [4, 5]. It must be noticed that T_c is higher than T_{cry} up to B content $x = 0.28$ where dT_c/dp cannot be measured directly. Curie temperature T_c in $T_c > T_{\text{cry}}$ was estimated from the temperature dependence of magnetization up to T_{cry} using Brillouin function. The results of n, T_c and T_{cry} agree well with references [4, 5]. The values of n and T_c extrapolated to Co seem to agree with those for crystalline Co.

In figure 2, temperature dependences of $d\omega/dH$ for amorphous $\text{Co}_{1-x}\text{B}_x$ alloys are shown. Values of $d\omega/dH$ decrease with increasing T/T_c and seem to take the minimum at T_c for specimens in $T_c > T_{\text{cry}}$ ($x < 0.28$), but they increase with increasing T/T_c and take the sharp peak at T_c for specimens in $T_c < T_{\text{cry}}$ ($x \geq 0.28$). From these results, pressure effects on magnetic moment per gram σ_0 at 0 K, $d \ln \sigma_0/dp$, and on T_c, dT_c/dp, can be estimated indirectly using the Kornetzki-Kouvel’s relation [3] even in $T_c > T_{\text{cry}}$.
and
\[\frac{d\omega}{dH} = \rho \sigma_s [T (d \ln \sigma_0 / dT)
\times (d \ln T_c / dp) - d \ln \sigma_0 / dp] \]

In this paper, only \(dT_c / dp \) is described and \(d \ln \sigma_0 / dp \) will be done elsewhere.

In figure 3, values of \(dT_c / dp \) estimated indirectly for amorphous \(\text{Co}_{100-x}\text{B}_x \) alloys are shown as a function of Co content, together with those measured directly for amorphous \(\text{Co}_{68}\text{B}_{34} \) alloy [1] and crystalline Co [7]. And are also shown together with those obtained directly and indirectly for amorphous \(\text{(CoTm)}_{90}\text{Zr}_{10} \) \((\text{Tm} = \text{Cr}, \text{Mo})\) alloys [1, 2].

For amorphous \(\text{Co}_{100-x}\text{B}_x \) alloys, there is the large difference between the values of \(dT_c / dp \) obtained directly and indirectly. The smaller values of \(dT_c / dp \) estimated indirectly are consistent with the results of thermal expansion as described in reference [2].

For amorphous \(\text{Co}_{100-x}\text{B}_x \) alloys, there is also the difference between the values of \(dT_c / dp \) obtained directly and indirectly. That is, -0.8 and -0.1 K/kbar obtained directly and indirectly for amorphous \(\text{Co}_{68}\text{B}_{34} \) alloys, respectively. Due to the results of thermal expansion [1], there is no indication that the gap of thermal expansion coefficient at \(T_c \) appears in the Ehrenfest’s equation. Therefore, it cannot be expected almost for \(dT_c / dp \) to exist, and the smaller value of \(dT_c / dp \) estimated indirectly from \(d\omega / dH \) is thought to be reasonable one than the larger one measured directly.

Finally, in figure 3, when the values of \(dT_c / dp \) estimated indirectly for amorphous \(\text{Co}_{100-x}\text{B}_x \) and \(\text{(CoTm)}_{90}\text{Zr}_{10} \) \((\text{Tm} = \text{Cr}, \text{Mo})\) alloys are extrapolated to Co, it is very interesting that the converged value of \(dT_c / dp \) agrees with that for crystalline Co [7]. This means that magnetic properties of amorphous Co are equal to those of crystalline Co.