PRESSURE EFFECT ON CURIE TEMPERATURE FOR (FeNi)90 Zr10 AMORPHOUS ALLOYS

H. Tange, Y. Tanaka, K. Shirakawa

To cite this version:

H. Tange, Y. Tanaka, K. Shirakawa. PRESSURE EFFECT ON CURIE TEMPERATURE FOR (FeNi)90 Zr10 AMORPHOUS ALLOYS. Journal de Physique Colloques, 1988, 49 (C8), pp.C8-1281-C8-1282. <10.1051/jphyscol:19888583>. <jpa-00228798>

HAL Id: jpa-00228798
https://hal.archives-ouvertes.fr/jpa-00228798
Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PRESSURE EFFECT ON CURIE TEMPERATURE FOR \((\text{FeNi})_{90}\text{Zr}_{10}\) AMORPHOUS ALLOYS

H. Tange (1), Y. Tanaka (1) and K. Shirakawa (2)

(1) Faculty of Science, Ehime University, Matsuyama 790, Japan
(2) Research Institute of Electric and Magnetic Alloys, Sendai 982, Japan

Abstract. — Pressure effect on Curie temperature, \(dT_c/ dp\), for amorphous \((\text{FeNi})_{90}\text{Zr}_{10}\) alloys is estimated indirectly from forced volume magnetostriction. The alloys change from magnetically heterogeneous state to homogeneous one in Fe-rich region with increasing Ni, and stay in homogeneous one even in Ni-rich region differently from the results of \(dT_c/ dp\) measured directly.

1. Introduction

Magnetic properties for \(\text{Fe}_{90}\text{Zr}_{10}\) based amorphous alloys have been investigated recently, because they show Invar effect [1]. In this paper, pressure effect on Curie temperature \(T_c\), \(dT_c/ dp\), for amorphous \((\text{Fe}_{1-x}\text{Ni}_x)_{90}\text{Zr}_{10}\) alloys is estimated indirectly from measurements of forced volume magnetostriction \(\omega_v/ dH\) using the Kornetzki-Kouvel's relation [2], and is compared with the results of \(dT_c/ dp\) measured directly [3]. Those measured directly show that absolute values of \(dT_c/ dp\) decrease monotonically with increasing Ni. This suggests that according to the Wagner-Wohlfarth's discussion [4] these amorphous alloys change from homogeneous state to heterogeneous one.

However, it may be thought that the concentration dependence of \(dT_c/ dp\) has the extreme value around \(x = 0.1\) of Ni, because concentration dependences of magnetic moment \(n\) [1] and spontaneous volume magnetostriction \(\omega_v(0)\) obtained from the results of thermal expansion [1] have the maximum values around \(x = 0.1\) of Ni like as those for amorphous \((\text{FeCo})_{90}\text{Zr}_{10}\) alloys [1]. Therefore, it is expected that amorphous \((\text{FeNi})_{90}\text{Zr}_{10}\) alloys change from heterogeneous state to homogeneous one around \(x = 0.1\) of Ni like as amorphous \((\text{FeCo})_{90}\text{Zr}_{10}\) alloys [5] in contrast to the results of \(dT_c/ dp\) measured directly [3]. To ensure that, estimating \(dT_c/ dp\) for amorphous \((\text{FeNi})_{90}\text{Zr}_{10}\) alloys should be done in the whole range of Ni.

2. Experiments

Specimens prepared by the single-roller quenching technique were amorphous \((\text{Fe}_{1-x}\text{Ni}_x)_{90}\text{Zr}_{10}\) \((0 \leq x \leq 0.9)\) and in the form of ribbons 1-2 mm wide. Ribbons 22 mm long were used as samples. Measurements of \(\omega_v/ dH\) were done by the three-terminal capacitance method [6] in fields up to 18 kOe and at temperatures from 4.2 K to \(T_c\).

3. Results and discussion

In figure 1, magnetic moment per 3d transition metal \(n\), \(T_c\) and crystallization temperature \(T_{cry}\) for amorphous \((\text{Fe}_{1-x}\text{Ni}_x)_{90}\text{Zr}_{10}\) alloys are shown as a function of Ni content \(x\), together with the results published [3]. Magnetic moment \(n\) shows the maximum around \(x = 0.1-0.2\). Curie temperatures \(T_c\) are below \(T_{cry}\) in the whole range of Ni content. The results of \(n\), \(T_c\) and \(T_{cry}\) agree well with the results of reference [3].

Fig. 1. — Magnetic moment per 3d transition metal \(n\), \(T_c\) and \(T_{cry}\) vs. Ni content \(x\) for amorphous \((\text{Fe}_{1-x}\text{Ni}_x)_{90}\text{Zr}_{10}\) alloys, together with the results published [3].
In figure 2, temperature dependences of \(\frac{d\omega}{dH} \) for amorphous \((\text{Fel}-x\text{Ni})_{90}\text{Zr}_{10}\) alloys are shown. The values of \(\frac{d\omega}{dH} \) decrease with increasing Ni. The sharp peak is seen at \(T_c \) in Fe-rich region, but the broad minimum in Ni-rich region. From these results, pressure effects on magnetic moment per gram \(\sigma_0 \) at \(0 \) K, \(\frac{d\ln \sigma_0}{dp} \), and on \(T_c \), \(\frac{dT_c}{dp} \), can be estimated indirectly using the Kornetzki-Kouvel's relation [2]:

\[
\frac{d\omega}{dH} = -\rho \left(\frac{d\sigma_0}{dp} \right)
\]

and \(\frac{d\omega}{dH} = \rho \sigma_s \left[T \frac{d\ln \sigma_s}{dT} \right] \left(\frac{d\ln T_c}{dp} \right) - \frac{d\ln \sigma_0}{dp} \).

In this paper, only \(\frac{dT_c}{dp} \) is described, and \(\frac{d\ln \sigma_0}{dp} \) will be done elsewhere.

In figure 3, the results of \(\frac{dT_c}{dp} \) estimated indirectly for amorphous \((\text{Fel}-x\text{Ni})_{90}\text{Zr}_{10}\) alloys are shown as a function of \(T_c \), together with those measured directly for amorphous \((\text{FeNi})_{90}\text{Zr}_{10}\) [3] and crystalline FeNi alloys [7]. The values of \(\frac{dT_c}{dp} \) estimated indirectly for amorphous \((\text{FeNi})_{90}\text{Zr}_{10}\) alloys take the minimum around \(x = 0.1 \) of Ni and change the sign from negative to positive with increasing Ni. This behavior of \(\frac{dT_c}{dp} \) estimated indirectly is the same as that for amorphous \((\text{FeCo})_{90}\text{Zr}_{10}\) alloys [5] in Fe-rich region and as that for crystalline FeNi alloys [7] in Ni-rich region in contrast to the results of \(\frac{dT_c}{dp} \) measured directly for amorphous \((\text{FeNi})_{90}\text{Zr}_{10}\) alloys [3].

According to the Wagner-Wohlfarth’s discussion [4], \(\frac{dT_c}{dp} \) are expressed as \(\frac{dT_c}{dp} = -aT_c + bT_c^2 \) for magnetically heterogeneous state and as \(\frac{dT_c}{dp} = aT_c - b/T_c \) for homogeneous one from Landau-Ginzburg model. The behavior of \(\frac{dT_c}{dp} \) estimated indirectly for amorphous \((\text{FeNi})_{90}\text{Zr}_{10}\) alloys shows to change from magnetically heterogeneous state to homogeneous one around \(x = 0.1 \) of Ni and to stay in homogeneous state even in Ni-rich region. This is contrast to that measured directly which shows to be magnetically homogeneous state in Fe-rich region and to change to heterogeneous one in Ni-rich region [3].

To check the heterogeneity in details, Mössbauer effect is necessary to be applied.