MAGNETIC PROPERTIES OF Co-HEUSLER AND RELATED MIXED ALLOYS
H. Ido, S. Yasuda

To cite this version:
H. Ido, S. Yasuda. MAGNETIC PROPERTIES OF Co-HEUSLER AND RELATED MIXED ALLOYS. Journal de Physique Colloques, 1988, 49 (C8), pp.C8-141-C8-142. <10.1051/jphyscol:1988857>. <jpa-00228783>

HAL Id: jpa-00228783
https://hal.archives-ouvertes.fr/jpa-00228783
Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
MAGNETIC PROPERTIES OF CO-HEUSLER AND RELATED MIXED ALLOYS

H. Ido and S. Yasuda

Faculty of Engineering, Tohoku Gakuin University, Tagajo, Miyagi, 985, Japan

Abstract. Magnetic and crystallographic measurements were made for Co_{2-x}Fe_xMnM (M = Si, Ge, Sn and Ga) and Co_{2-x}Mn_xSi. In Co_{2}MnM, the magnetic moment (\mu_P) in the paramagnetic temperature region is generally much smaller than the ferromagnetic moment (\mu_F) at T = 0 K, which implies that the Co-moment disappears above T_c. The other results are also discussed.

Ferromagnetic Co-Heusler alloys of the type Co_{2}MnM (M = Si, Ge etc.) have been extensively studied by many authors [1-5]. One of the present authors [2] pointed out by the susceptibility measurements of Co_{2}MnM (M = Si, Ge) up to 1300 K that the paramagnetic moment per formula unit, \mu_P, takes about one half value of the ferromagnetic moment per formula unit, \mu_F, where \mu_F = 2S_{Co} + S_{Mn} and \mu_P = 2S\mu_B respectively. In these equations, S_{Co} and S_{Mn} are spin values of Co- and Mn-atoms respectively, and S is an averaged spin expressed by equation S (S + 1) = 2S_{Co} (S_{Co} + 1) + S_{Mn} (S_{Mn} + 1), whose right hand appears in the Curie-Weiss constant of material which has two kinds of magnetic atoms. To confirm and extend the above results, we have studied Co_{2}MnGa, Co_{2-x}Fe_xMnM (M = Si, Ge and Sn) and Co_{2-x}Mn_{1+x}Si in addition to Co_{2}MnM (M = Si, Ge and Sn). The Heusler type (L2_1) alloys in this work were prepared by the sintering method [2], and confirmed to have the good atomic ordering by X-ray diffraction. Saturation magnetization (\sigma_s) versus temperature curves in this work agree well with the data of Webster [1]. The \sigma_s - T curves drop relatively rapidly in the temperature region just below the Curie temperatures (T_c) for M = Si and Ge. The paramagnetic susceptibilities for Co_{2}MnM (M = Si, Ge, Sn) obey well the Curie-Weiss law in the wide temperature regions except for the small parts of the \chi^{-1} - T curves as seen in figure 1. Similar results have been obtained also for Co_{2-x}Fe_xMnM (M = Si, Ge, Sn). As seen in figure 2, the data for x = 2 is somewhat different from the others. The magnetic parameters obtained are summarized in table I and figure 3. Data similar to figure 3 are also obtained for M = Ge and Sn. The values of \mu_F and \mu_P are especially noted. Since the averaged spin S in \mu_P (= 2S) was defined in the equation S (S + 1) = 2S_{Co} (S_{Co} + 1) + S_{Mn} (S_{Mn} + 1), if S_{Co} is not zero, the Mn-moment (= 2S_{Mn}) in the paramagnetic region becomes smaller than the experimental \mu_F in table I and figure 3. As Mn atoms in the Heusler alloys generally have the moment, 3 \sim 4\mu_B, it seems very likely that the Co atoms in Co_{2}MnM lose their magnetic moment in the para-

Table I. Magnetic and crystallographic data for Co_{2}MnM.

<table>
<thead>
<tr>
<th>Alloy</th>
<th>a (Å)</th>
<th>T_c (K)</th>
<th>\theta_p (K)</th>
<th>\mu_F (µB/f.u.)</th>
<th>\mu_P (µB/f.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co_{2}MnSi</td>
<td>5.65</td>
<td>1034</td>
<td>1044</td>
<td>5.10</td>
<td>2.03</td>
</tr>
<tr>
<td>Co_{2}MnGe</td>
<td>5.74</td>
<td>905</td>
<td>890</td>
<td>4.66</td>
<td>2.61</td>
</tr>
<tr>
<td>Co_{2}MnSn</td>
<td>6.00</td>
<td>826</td>
<td>870</td>
<td>5.37</td>
<td>3.35</td>
</tr>
<tr>
<td>Co_{2}MnGa</td>
<td>5.77</td>
<td>695</td>
<td>770</td>
<td>4.09</td>
<td>3.28</td>
</tr>
</tbody>
</table>
magnetic temperature region. According to Webster [1], the Co atoms in Co$_2$MnM (M = Si, Ge etc.) have a magnetic moment of 0.75 μ_B at $T = 0$ K. Therefore the Co-moment would be induced by a molecular field of the Mn-sublattice moment below T_C. In figure 3, the μ_t value coincides with the μ_p value at $x \approx 1$, which would mean that the condition for the A-site atoms to be magnetically polarized disappears by the change of averaged number of d electrons.

The lattice parameter of Co$_2$MnGa has been measured by X-ray diffraction technique as shown in figure 4. No anomaly was observed at T_C, which seems to contradict the polarization of the Co atoms below T_C. To investigate the effect of the atomic disorder such as an exchange of atoms between the A site (Co) and the B site (Mn), we prepared Co$_{2-x}$Mn$_{1+x}$Si alloys. When the composition x is positive, the excess Mn atoms will occupy the A site and the situation will be reversed for the negative x. Magnetic data for Co$_{2-x}$Mn$_{1+x}$Si are shown in figure 5. Kinks appear at $x = 0$ on the curves of $\mu_t(x)$, $T_C(x)$ and the paramagnetic Curie point $\theta_p(x)$, which would mean that the atomic ordering of Co$_2$MnSi is good and stable. We also found that several Co$_2$MnSi alloys which experienced various heat treatments, have the same magnetization within the limit of error at $T = 77$ K. Therefore the atomic ordering is also stable for temperature variation in Co$_2$MnM. The μ_t vs. x curve in figure 5 indicates that the excess Co atoms occupy the B-site ferromagnetically to the matrix magnetization and the excess Mn atoms occupy the A-site antiferromagnetically to the matrix magnetization.