MAGNETIC PROPERTIES OF DILUTE RANDOM MAGNETIC ANISOTROPY SYSTEMS (DyxY1-x) Al2
A. Del Moral, P. Gehring, J. Arnaudas, M. Salamon

To cite this version:

HAL Id: jpa-00228771
https://hal.archives-ouvertes.fr/jpa-00228771
Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
MAGNETIC PROPERTIES OF DILUTE RANDOM MAGNETIC ANISOTROPY SYSTEMS (Dy \(_{x}Y_{1-x}\))\(_{2}\) Al\(_{2}\)

A. del Moral (1,2), P. M. Gehring (3), J. I. Arnaudas (1) and M. B. Salamon (2)

(1) Depto. de Fisica de la Materia Condensada and ICMA, Universidad de Zaragoza – CSIC, 50009 Zaragoza, Spain
(2) Dept. of Physics and MRL, University of Illinois, Urbana, IL 61801, U.S.A.

Abstract. The magnetic phase diagram for the RMA system Dy\(_{x}Y_{1-x}\)\(_{2}\) Al\(_{2}\) is determined. For \(x \leq 0.30\) a PM/SG phase exists. No long range magnetic order appears, yet the initial susceptibility diverges at and below the PM/CSG transition. Scaling analysis indicates phase transitions, and the critical exponents \(\beta, \gamma, \delta, \Delta\) and \(\phi\) and \(\beta_s, \gamma_s\) and \(\delta_s\) have been determined.

1. Introduction

Interest in random magnetic anisotropy (RMA) magnets stems from predictions [1-3] that no ferromagnetic order (if exchange is \(J_o > 0\)) is possible below \(d = 4\); yet an infinite susceptibility (or very large, \(\chi \propto (J_o / D_0)^4\), where \(D_0\) is the uniaxial strength RMA) is expected below a certain temperature \(T_c\). Depending on \(D_0\) two kinds of magnetic order are possible: at \(T < T_{SG}\), anisotropy is strong and the system becomes a SG, while for \(T_{SG} < T < T_c\) it becomes a “coherent spin glass” (CSG), with quasiferromagnetic domains but without spontaneous magnetization [3].

We have studied the crystalline systems Dy\(_{x}Y_{1-x}\)\(_{2}\) (\(x \leq 0.45\)) and found RMA behaviour, a fact never observed in crystalline cubic Laves phases. Two kinds of measurements were performed: magnetization up to 5 T and down to 1.7 K using a SQUID, and AC susceptibility at 15 Hz and 35 mOe, down to 2.2 K.

2. Theoretical background

We will outline the scaling or critical behaviour of initial susceptibility, \(x_0\), SG order parameter, \(q\), nonlinear susceptibility, \(x_{nl}\), magnetization, \(M\), and spin relaxation time, \(T_s\). For \(D_0 \to \infty\) (Ising) an AT line of instability \(H = H_{AT}t^{\phi/2}\) is expected (\(\phi = 3\)) [4]. When anisotropy is weak transverse spin freezing is possible, along a GT phase transition line \(H = H_{GT}t^{\phi/2}\) (\(\phi = 1\)) [5].

Aharony and Pytte [2] deduced an equation of state which predicts \(M = 0\) for \(T < T_{SG}\) or \(T_c\). Therefore, for low \(H\), isotherms have the form, \(M \sim H^{1/6}\) (\(T = T_c\)) and \(M \sim H^{1/4}\) (\(T < T_c\)) and the initial susceptibility scales as \(x_0 \sim t^{-\gamma}\) for \(T > T_c\), where \(t = (T - T_c) / T_c\). Similar results were also obtained using MFA [6].

When the CSG phase no longer occurs, it is \(x_{nl}\) which diverges at \(T_{SG}\),

\[
x_{nl} \equiv M / H - x_0 = \beta f H^{2/\gamma_s} / (t^{\phi_s} / H),
\]

or

\[
H^{2/\gamma_s} g (t^{2/\phi_s} / H). \quad (1)
\]

with \(t \equiv (T_{SG} - T) / T_{SG}\). For \(t > 0\), we have \(x_{nl} \sim H^2\)

while \(x_{nl} \sim H^{2/\gamma_s}\) for \(T = T_{SG}\). The order parameter \(q\) is obtained from \(x_0\) using Fisher equation, \(x_0 = C (1 - q) / [T - \theta (1 - q)]\), where \(\theta \propto J_0\).

3. Experimental results and discussion

In figure 1 we show the thermal dependence of \(x_{AC}\) (real part) for the CSG systems, where two anomalies at \(T_c\) and \(T_{SG}\) appear (for \(x \leq 0.30\) there is only one at \(T_{SG}\) (Tab. I)). Evidently, the concentration of the nominal \(x = 0.40\) sample is lower than that of the \(x = 0.38\) sample. The phase diagram is shown in figure 2, \(x = 0.30\) being a tricritical point. From \(x_{AC}\) and the Fisher equation we were able to determine \(q(T)\), that shows a \(\beta_s\) exponent near to MFA, \(\beta_s = 1\) (Tab. I). Transition lines in plane \((H, T)\) have been

![Fig. 1. - Thermal variation of initial AC susceptibility, \(x_{AC}\). All concentrations are nominal, except for \(x = 0.38\).](http://dx.doi.org/10.1051/jphyscol:19888559)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(T_{SG}) (K)</th>
<th>(T_c) (K)</th>
<th>(q)</th>
<th>(\beta)</th>
<th>(\gamma)</th>
<th>(\delta)</th>
<th>(\Delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>3.35</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.20</td>
<td>4.30</td>
<td>-</td>
<td>(*)</td>
<td>1.47</td>
<td>1.67</td>
<td>1</td>
<td>1.12</td>
</tr>
<tr>
<td>0.25</td>
<td>4.35</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.30</td>
<td>6.0</td>
<td>6.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.35</td>
<td>3.4</td>
<td>11.2</td>
<td>0.46</td>
<td>2.43</td>
<td>5.0</td>
<td>1.07</td>
<td>3</td>
</tr>
<tr>
<td>0.40</td>
<td>3.8</td>
<td>9.8</td>
<td>0.50</td>
<td>1.28</td>
<td>3.2</td>
<td>1.22</td>
<td>3</td>
</tr>
<tr>
<td>0.45</td>
<td>2.5</td>
<td>12.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MFA</td>
<td>0.50</td>
<td>2.31</td>
<td>3.1/3</td>
<td>1.0</td>
<td>1</td>
<td>1.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

(\(\ast\)) At 1.6 K; (-) exponent not determined; (*) magnetization not critical; (a) renormalization group.
observed. For the SG systems \((0.10 \leq x \leq 0.30)\) a shift of a broad magnetization cusp with applied field is observed, following a GT line \((\varphi = 1)\), showing irreversibility between FC and ZFC magnetizations. For CSG systems the PM/CSG line is of AT type \((\varphi = 3)\).

Scaling analysis: in figure 3 we plot \(M^2\) vs. \(H/M\) for \(x = 0.38\), in general no spontaneous magnetization is found below \(T_c\) or \(T_{SG}\). It is difficult to determine if \(x_0\) diverges or attains the demagnetizing limit, although \((\text{Fig. 3})\) for \(x > 0.30\), \(x_0\) attains such limit.

Fig. 2. Magnetic phase diagram; \((\circ) = \chi'_{AC}, (\Delta) =\) magnetization.

Fig. 3. Arrott plot of \(M^2\) vs. \(H/M\) (D.L. = demagnetizing limit).

Fig. 4. Log-log plot of \(M\) vs. \(H\) in SG regime.

In figure 4 we show the power law relation between \(M\) and \(H\), in the SG regime. This behaviour is also observed at \(T = T_{SG}\) or \(T_c\) and in the CSG regime \((\delta = 2.33, \delta_1 = 5)\). Notice in table I that the AP values, \(\delta = 2.33\) and \(\delta_1 = 5\) agree well with our best characterized sample, \(x = 0.38\).

Although there is no spontaneous magnetization below \(T_c\) or \(T_{SG}\) is was suggested [7] that a crossover with \(H\) from SG to ferromagnet can exist. In fact we observe scaling \(M^2 \sim t^{\delta} \) in non-zero field for the CSG systems but not for the SG ones. A divergent susceptibility \(x_0 \sim t^{-\gamma_6}\) was observed for \(T > T_c\) (CSG) \((\gamma_6\) in Tab. I).

Non-linear susceptibility: for small \(H\) and at \(T_{SG}\), \(x_{nl} / H^2\) diverges indicating true PM/SG or CSG/SG phase transitions. According to (1), \(x_{nl} \sim t^{-\gamma_6}\) for \(t > 0\) at \(H \to 0\), as observed in figure 5 \((\gamma_6\) in Tab. I). Equations (1) predict that \(x_{nl} \sim H^{2/\delta_4}\) at \(T = T_{SG}\); values for \(\delta_4\) are given in table I.

We should mention that critical slowing down of the spin-spin relaxation time, \(T_2 \sim t^{-\lambda_4}\), has been observed at \(T_{SG}\) and \(T_c\). Table I summarize the critical exponents, including the MFA values.

Acknowledgments

We are indebted to the Spanish CICYT for the grant 789/84 and to be American NSF MRL Program, DMR-8612860.