TEMPERATURE VARIATION OF HYPERFINE MAGNETIC FIELD IN Co2MnZ AND Co2TiZ (Z = Si, Ge, Sn)

S. Jha, S. Yehia, C. Mitros, A. Lahamer, Glenn Julian, R. Dunlap

To cite this version:
S. Jha, S. Yehia, C. Mitros, A. Lahamer, Glenn Julian, et al.. TEMPERATURE VARIATION OF HYPERFINE MAGNETIC FIELD IN Co2MnZ AND Co2TiZ (Z = Si, Ge, Sn). Journal de Physique Colloques, 1988, 49 (C8), pp.C8-137-C8-138. <10.1051/jphyscol:1988855>. <jpa-00228761>

HAL Id: jpa-00228761
https://hal.archives-ouvertes.fr/jpa-00228761
Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
TEMPERATURE VARIATION OF HYPERFINE MAGNETIC FIELD IN Co_2MnZ AND Co_2TiZ ($Z = \text{Si, Ge, Sn}$)

S. Jha (1), S. Yehia (2), C. Mitros (1), A. Lahamer (1), Glenn M. Julian (2) and R. A. Dunlap (4)

(1) University of Cincinnati, Cincinnati, Ohio 45221, U.S.A.
(2) Mansoura U., Damietta, Egypt
(3) Miami U., Oxford, Ohio 45056 U.S.A.
(4) Dalhousie U., Halifax, Nova Scotia B3H 3J5 Canada

Abstract. — The temperature variation of the hyperfine magnetic field (hf) at $\text{Cd}-111$ in Co_2MnZ and at $\text{Sn}-119$ in Co_2TiZ ($Z = \text{Si, Ge, Sn}$) was measured respectively by perturbed angular correlation and Mössbauer techniques. In Co_2MnZ the hf follows the temperature variation of magnetization, but in Co_2TiZ it deviates significantly.

Introduction

There have been many measurements of hyperfine magnetic fields (hf) at s-p element probes in L_21 Heusler alloys, which have the composition X_2YZ. When Y is Mn and it is the only atom carrying a moment, the temperature variation of the hf follows that of the magnetization reasonably well [1-2]. When more than one atom has a moment, the temperature variation of the hf is likely to deviate from that of the magnetization. Delyagin et al. [3] measured hf at Sn-119 impurity in Co_2MnZ and found small deviation for $Z = \text{Si}$ and spectacular deviation for $Z = \text{Ge}$, with $H(0.75 T_M) \gg H(0)$ reminiscent of Os-192 hf in Fe [4, 5]. Co_2MnSi and Co_2MnGe have respectively $T_M = 985$ K and 905 K, and the hf on Sn-119 is small so the Zeeman pattern is not well resolved. Investigation of temperature variation of hf at s-p element probe can be better done by time differential perturbed angular correlation (TDPAC) with Cd-111, which is being reported here. Among Heusler alloys Co_2YZ where the moment is only on Co and is not well localized, Görlich et al. [6] found the temperature variation of the hf at Sn-119 in Co_2TiSn follows that of the magnetization. The studies are extended here to include Co_2TiSi and Co_2TiGe.

Experimental techniques

Heusler alloys Co_2MnZ ($Z = \text{Si, Ge, Sn}$) were prepared by powder metallurgy. Co_2TiSn and $\text{Co}_2\text{TiZ}_{0.98}$ ($Z = \text{Si, Ge}$) were made by induction melting; for the latter two, 2 at % ^{119}Sn-enriched Sn was subsequently added by powder metallurgy. X-ray diffraction showed the samples were single-phase. The hf at Sn-119 was measured by the Mössbauer technique. For Co_2MnZ carrier-free In-111 was diffused into the samples and the hf at Cd-111 was measured with the TDPAC technique [1, 2]. Measurements at low temperatures were made with the sample immersed in cryogenic fluid; high temperatures were achieved with the sample in an electric resistance furnace.

Results and discussion

Figure 1 gives TDPAC spectra of In-111 in Co_2MnGe, and figure 2 gives Mössbauer spectra of Sn-119 in Co_2TiSi. The 295 K spectrum in figure 2 contains a line with no measurable splitting, attributed to small or no hf at Sn in the Si site, also hf of 63 kOe attributed to Sn at some other site. The unresolved Zeeman pattern in the Co_2TiZ spectra, despite hf of up to 80 kOe, indicates site disorder for Sn-119.

Fig. 1. — TDPAC spectra of In-111 in Co_2MnGe and A) 822 K, B) 672 K and C) 77 K.

The Co-based Heusler alloys have nonlocalized moment contributed by Co. The resulting hf is detected by Cd-111 and Sn-119 probes at the Z site; values at 77 K are given in table I. Temperature variation of hf
Table I. - Hmf in kOe. Sign undetermined unless shown.

<table>
<thead>
<tr>
<th>Host</th>
<th>H (Cd - 111)</th>
<th>T (K)</th>
<th>Host</th>
<th>H (Sn - 119)</th>
<th>T (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co$_2$MnSi</td>
<td>-260 ± 5</td>
<td>293</td>
<td>Co$_2$TiSi</td>
<td>80 ± 3</td>
<td>77</td>
</tr>
<tr>
<td>Co$_2$MnGe</td>
<td>-256 ± 5</td>
<td>77</td>
<td>Co$_2$TiGe</td>
<td>66 ± 3</td>
<td>77</td>
</tr>
<tr>
<td>Co$_2$MnSn</td>
<td>-210 ± 5</td>
<td>77</td>
<td>Co$_2$TiSn</td>
<td>78 ± 3</td>
<td>77</td>
</tr>
</tbody>
</table>

Fig. 2. – Sn-119 Mössbauer spectra of Co$_2$TiSi$_{0.98}$Sn$_{0.02}$ at A) 295 K and B) 77 K.

Fig. 3. – Temperature variation of Cd-111 hmf in Co$_2$MnZ. The line is magnetization of Co$_2$MnGe [7].

The temperature variation of the hmf at Cd-111 in Co$_2$MnZ, with $Z =$ Si, Ge and Sn, is found not to deviate dramatically from that of the magnetization. This is in contrast to the result of Delyagin et al. [3] for hmf at Sn in Co$_2$MnSi and Co$_2$MnGe. If their result is correct, it is difficult to see why the Cd probe, also an s-p element at the Sn site, would not show similar deviation.

Fig. 4. – Temperature variation of Sn-119 hmf in Co$_2$TiZ. The line is magnetization of Co$_2$TiSn [8].

The temperature variation of the hmf at Sn-119 in Co$_2$TiZ, with $Z =$ Si, Ge and Sn, is found to be similar for all three cases, and also to deviate from that of magnetization, unlike the previous result of Görlich et al. [6]. It is found that the hmf measured is dependent on sample preparation; this may explain the difference.

Acknowledgment

This study was supported by NASA grant NAG 3-847.