RESISTIVITY OF THE REENTRANT SYSTEMS NiMn AND α-FeZr NEAR THE FERROMAGNETIC PHASE TRANSITION

P. Pureur, J. Schaf, W. Schreiner, D. Mosca, J. Kunzler, D. Ryan, J. Coey

To cite this version:

HAL Id: jpa-00228725
https://hal.archives-ouvertes.fr/jpa-00228725
Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
RESISTIVITY OF THE REENTRANT SYSTEMS NiMn AND \(a\)-FeZr NEAR THE FERROMAGNETIC PHASE TRANSITION

P. Pureur (1), J. Schaf (1), W. H. Schreiner (1), D. H. Mosca (1), J. V. Kunzler (1), D. H. Ryan (2) and J. M. D. Coey (2)

(1) Instituto de Física-UFGRS, POB 15051, 91500 Porto Alegre, RS, Brasil
(2) Department of Pure and Applied Physics, Trinity College, Dublin 2, Ireland

Abstract. – We report on the temperature derivative of the resistivity close to the Curie temperature of the reentrant systems NiMn 22 at % and \(a\)-FeZr 8 at %. Magnetic susceptibility results for the NiMn system are also presented. Critical exponents could be deduced from the data.

The critical behaviour of systems presenting quenched magnetic disorder is a topic of considerable current interest. In particular, the problem of the existence or not of a spin glass phase transition is still not completely elucidated [1]. Also, the nature of phase transitions in amorphous ferromagnets is not yet well understood [2]. Another interesting case is represented by the so called magnetic reentrant systems, which first undergo a para-ferromagnetic transition followed by a transition to a spin glass-like state at lower temperatures.

In this communication we focus on the critical behaviour at the Curie point of two reentrant-like systems, namely polycrystalline NiMn 22 at % and amorphous FeZr 8 at %. Primarily, we study the temperature derivative of the resistivity, \(\frac{d\rho}{dT}\), in the vicinity of \(T_c\). It is known that \(\frac{d\rho}{dT}\) presents the same critical behaviour as the magnetic specific heat [3]. For the NiMn system, we also report on detailed AC susceptibility measurements close to \(T_c\) and on DC magnetization results between 4 K and 300 K.

To obtain the NiMn alloy in the reentrant state, the sample was submitted to an annealing of one hour at 900 °C, followed by 2 hours at 600 °C, then by a rapid quench to room temperature. The FeZr amorphous ribbon was prepared by melt-spinning as described earlier [4]. We perform accurate resistivity measurements for both samples using a standard AC technique. During the measurements, the temperature was allowed to drift very slowly. Around \(T_c\) drift rates were typically of 100 mK/min, either for cooling or heating the samples. By measuring a large number of points, we could numerically determine the temperature derivative of the resistivity using a procedure described in reference [5]. Because of the weakness of the temperature dependence of the resistivity for both systems, the \(\frac{d\rho}{dT}\) points were obtained within relative uncertainties smaller than 2 % for NiMn and 5 % for FeZr. Close to \(T_c\), the AC susceptibility results are accurate enough for critical behaviour studies [6].

The \(\frac{d\rho}{dT}\) results for NiMn are shown in figure 1.

![Figure 1](http://dx.doi.org/10.1051/jphyscol:19888518)

Fig. 1. Temperature derivative of the resistivity for NiMn 22 at %. The solid line corresponds to a fit obtained from equation (1a) with \(\alpha = -0.81\) and \(T_c = 228.6\) K.

The usual power law which describes the divergence of \(\frac{d\rho}{dT}\) in the critical region is given by [2]:

\[
\frac{d\rho}{dT} = \frac{A^+}{\alpha^+} (\varepsilon^{-\alpha^+} - 1) + B^+ \quad (T > T_c) \tag{1a}
\]

\[
\frac{d\rho}{dT} = \frac{A^-}{\alpha^-} (|\varepsilon|^{-\alpha^-} - 1) + B^- \quad (T < T_c) \tag{1b}
\]

where \(A\) and \(B\) are constants, \(\varepsilon = (T - T_c) / T_c\) and the critical exponents \(\alpha\), \(\alpha'\) are expected to be the same as those for the singular part of the specific heat [3]. However, we observe in figure 1 that for \(T < T_c\) a complex feature is apparent in \(\frac{d\rho}{dT}\), which prevents the analysis of these data with equation (1b). We are thus left with the paramagnetic regime to study the critical behaviour of \(\frac{d\rho}{dT}\) in NiMn. A non linear least-square-fit of equation (1a) with the points in the interval \(0.005 < \varepsilon < 0.13\) gives \(T_c = 228.6 \pm 0.3\) K and \(\alpha = -0.81 \pm 0.05\).

In figure 2, we show AC susceptibility results close to \(T_c\) of the same NiMn sample. These results were analysed with \(\chi_0 = \Gamma \varepsilon^{-\gamma} \quad (\varepsilon > 0)\). Noting that this formula, which represents the leading divergence in the suscep-
Table I. – Critical point exponents for ferromagnetic, reentrant and spin glass systems.

<table>
<thead>
<tr>
<th>System</th>
<th>α</th>
<th>β</th>
<th>γ</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni Heisenberg ferromagnet (RG calculation)</td>
<td>-0.12</td>
<td>0.36</td>
<td>1.39</td>
<td>[13]</td>
</tr>
<tr>
<td>Ni</td>
<td>-0.10</td>
<td>0.38</td>
<td>1.34</td>
<td>[2]</td>
</tr>
<tr>
<td>NiMn 22 %</td>
<td>-0.81 ± 0.05</td>
<td>0.54(a)</td>
<td>1.72 ± 0.05</td>
<td>[5, 8]</td>
</tr>
<tr>
<td>a- FeZr 8 %</td>
<td>-1.1 ± 0.1</td>
<td>0.62</td>
<td>1.92 ± 0.02</td>
<td>[5, 8]</td>
</tr>
<tr>
<td>Ag Mn</td>
<td>-2.2(a)</td>
<td>1.0 ± 0.1</td>
<td>2.2 ± 0.2</td>
<td>[14]</td>
</tr>
</tbody>
</table>

(a) Estimated from scaling relation (2).

state appear to be strongly disordered and probably dominated by short range correlations. Prior magnetic and neutron scattering results for NiMn [8, 9] and for a-FeZr [4, 10] as well as Mössbauer measurements in this latter system [4] also point out such a description.

To finalize, we should mention that the interesting minimum observed in \(\rho / dT \) for NiMn just below \(T_c \) is also seen in \(\rho / dT \) results for the Pd2MnSn local moment ferromagnet [11] and, as in that case, seems to be linked with antiferromagnetic correlations which dominate in some regions of an otherwise ferromagnetic matrix (see also discussion by Kouvel et al. [12]).